Corrigé - B.E.P.C 2017 - Mathématiques

A) Activités numériques et diverses ((10 points)

Exercice

a. La bonne réponse est C=4.

On décompose d'abord 68000 en écriture scientifique : $68000 = 6,8 \times 10^4$.

D'où:
$$\log 68000 = \log(6, 8 \times 10^4)$$

 $= \log 10^4 + \log 6, 8$
 $= 4 \underbrace{\log 10}_{=1} + \log 6, 8$
 $= 4 + \log 6, 8$

Comme $\log 6.8 < 1$, on en déduit que la partie entière de $\log 68000$ est 4 et la partie décimale de $\log 68000$ est $\log 6, 8$.

Donc la caractéristique de log 68000 est 4.

b. On décompose les nombres 9; 4 et 800 en produit de facteurs premiers.

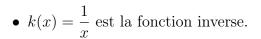
$$9 = 3^2$$
; $4 = 2^2$; $800 = 2^3 \times 10^2$

D'où :
$$M = \log \frac{9}{4} + \log 800$$

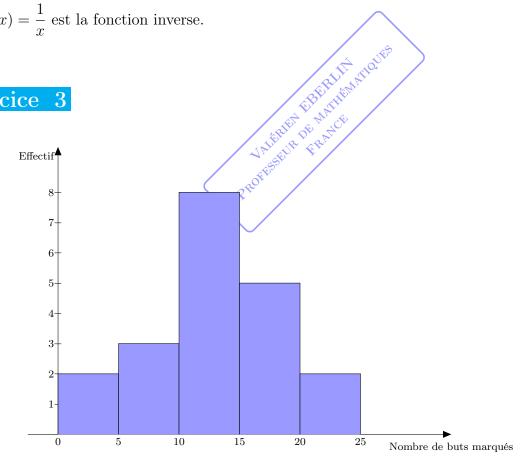
 $= \log 9 - \log 4 + \log 800$
 $= \log 3^2 - \log 2^2 + \log (2^3 \times 10^2)$
 $= 2 \log 3 - 2 \log 2 + \log 2^3 + \log 10^2$
 $= 2 \log 3 - 2 \log 2 + 3 \log 2 + 2 \underbrace{\log 10}_{=1}$
 $= 2 \log 3 - 2 \log 2 + 3 \log 2 + 2$
 $= 2 + \log 2 + 2 \log 3$
 $= 2 + 0,30103 + 2 \times 0,47712$
 $= 3,25527$

Exercice 2

- f(x) = -3x + 2 est une fonction affine car c'est de la forme f(x) = ax + b.
- $q(x) = \sqrt{x}$ est la fonction racine carrée.
- $h(x) = \frac{2x-1}{4x+5}$ est une fonction homographique car c'est de la forme $h(x) = \frac{ax+b}{cx+d}$.



Exercice 3



Problème A

1

$$P = (x+2)(3x-1) - \underbrace{(x+2)^2}_{(a+b)^2}$$

$$= x \times 3x - x \times 1 + 2 \times 3x - 2 \times 1 - \underbrace{(x^2+2 \times x \times 2 + 2^2)}_{a^2+2ab+b^2}$$

$$= 3x^2 - x + 6x - 2 - x^2 - 4x - 4$$

$$= 3x^2 - x^2 - x + 6x - 4x - 2 - 4$$

$$= 2x^2 + x - 6$$

2 Factorisons *P*.

$$P = (x+2)(3x-1) - (x+2)^{2}$$

$$= \underbrace{(x+2)(3x-1)}_{k \times a} - \underbrace{(x+2)(x+2)}_{k \times b}$$

$$= \underbrace{(x+2)\left[(3x-1) - (x+2)\right]}_{k \times (a-b)}$$
on a appliqué la formule $k \times a - k \times b = k(a-b)$

$$= (x+2)(3x-1-x-2)$$

$$= (x+2)(2x-3)$$

3 Pour $x=\sqrt{2}$,

$$Q = 2 \times (\sqrt{2})^{2} + \sqrt{2} - 6$$

$$= 2 \times 2 + \sqrt{2} - 6$$

$$= 4 + \sqrt{2} - 6$$

$$= \sqrt{2} - 2$$

HEREN FIRENTIAL THAN A TOUTES $=\sqrt{2}-2$ a. H est définie pour toutes les valeurs de x, sauf celles où le dénominateur s'annule c'est à dire : H est définie si et seulement si $(x-1)(x+2) \neq 0$.

Résolvons l'équation produit :
$$(x-1)(x+2) = 0$$
.
 $(x-1)(x+2) = 0 \iff x-1 = 0 \text{ ou } x+2 = 0$
 $\iff x = 1 \text{ ou } x = -2$

Donc l'ensemble de définition de H est l'ensemble $\mathbb{R} \setminus \{-2; 1\}$.

b. Pour tout x appartenant à $\mathbb{R} \setminus \{-2; 1\}$,

$$q(x) = \frac{(x+2)(2x-3)}{(x-1)(x+2)} = \frac{2x-3}{x-1}$$

B) Activités géométriques (10 points)

Exercice

Définitions d'un carré

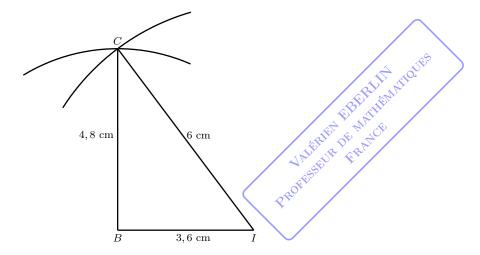
On donne ici deux définitions équivalentes d'un carré :

- Un carré est un quadrilatère qui a 4 angles droits et 4 côtés de même longueur.
- Un carré est un quadrilatère dont les diagonales sont perpendiculaires, se coupent en leur milieu et sont de même longueur.

Définition d'un trapèze

PROFESSEIR PERLANCE AND SERVICE AND SERVIC Un trapèze est un quadrilatère qui a deux côtés parallèles.

Exercice 2



2

$$IC^{2} = 6^{2}$$

$$= 36$$
 $BI^{2} + BC^{2} = 3, 6^{2} + 4, 8^{2}$

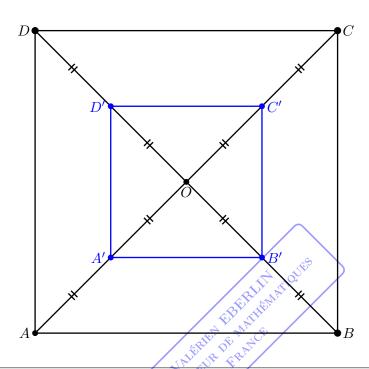
$$= 12, 96 + 23, 04$$

$$= 36$$

J'en déduis que $IC^2 = BI^2 + BC^2$

D'après la réciproque du théorème de Pythagore, le triangle BIC est rectangle en B.

Exercice 3



En effet, Comme h(A) = A' alors $\overrightarrow{OA'} = \frac{1}{2}\overrightarrow{OA}$. Ce qui signifie que les points O, A et A' sont alignés et sont tels que A' soit le milieu du segment [OA].

On construit de même, les autres points B', C' et D'.

Problème B

1 L'équation de la droite passant par les points A(2;1) et B(4;-1) est donnée par :

$$\frac{y - y_A}{y_B - y_A} = \underbrace{x - x_A}_{XB}$$

Soit
$$\frac{y-1}{-1-1} = \frac{x-2}{1-2}$$
 ou encore $\frac{y-1}{-2} = \frac{x-2}{-1}$.

En appliquant les égalités des produits en croix, on a :

$$-1 \times (y-1) = -2 \times (x-2) \iff -1 \times y - 1 \times (-1) = -2 \times x - 2 \times (-2)$$

$$\iff -y + 1 = -2x + 4$$

$$\iff 2x - 4 - y + 1 = 0$$

$$\iff 2x - y - 3 = 0$$

Une équation cartésienne de la droite (\mathcal{D}_1) est : 2x - y - 3 = 0.

Comme la droite (\mathcal{D}_2) a pour coefficient directeur a=-2, alors son équation est de la forme y=-2x+b.

De plus, comme le point C appartient à (\mathcal{D}_2) , alors ses coordonnées (0;-1) vérifie l'équation y=-2x+b c'est à dire $:-1=-2\times 0+b$. D'où b=-1.

Donc (\mathcal{D}_2) a pour équation y = -2x - 1. Ou encore 2x + y + 1 = 0.

Une équation cartésienne de la droite (\mathcal{D}_2) est : 2x + y + 1 = 0.

3 \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si $x_{\overrightarrow{u}} \times y_{\overrightarrow{v}} - x_{\overrightarrow{v}} \times y_{\overrightarrow{u}} = 0$ $x_{\overrightarrow{u}} \times y_{\overrightarrow{v}} - x_{\overrightarrow{v}} \times y_{\overrightarrow{u}} = 1 \times (-2) - (-1) \times 2$ = -2 + 2

D'où la colinéarité des vecteurs \overrightarrow{u} et \overrightarrow{v} .

 \overrightarrow{u} \overrightarrow{u} $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est un vecteur directeur de (\mathcal{D}_1) .

 \overrightarrow{v} $\begin{pmatrix} -1\\ -2 \end{pmatrix}$ est un vecteur directeur de (\mathscr{D}_2) .

Comme les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires, alors (\mathcal{D}_1) et (\mathcal{D}_2) sont parallèles.

En effet, si une droite (\mathcal{D}) a pour équation cartésienne ax + by + c = 0, alors le vecteur $\begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de (\mathcal{D}) .

