Correction bac 2020 Série D

Exercice 1

Exercice 1 $1 \ i\overline{z}_2 = 1 - 2i \iff i\overline{z}_2 = \overline{1 - 2i} \iff -iz_2 = 1 + 2i \iff z_2 = -2 + i.$ En remplement z_1 nor $z_2 + i$ denotes the second $z_2 = 1 + 2i \iff z_2 = -2 + i$.

En remplaçant z_2 par -2+i dans la première équation $z_1+z_2=-3+i$, on en déduit $z_1 = -1$.

En remplaçant z_2 par -2+i dans la dernière équation $z_2 \times z_3 = -1-2i$, on en déduit que $z_3 = \frac{-1-2i}{-2+i} = \frac{(-1-2i)(-2-i)}{(-2+i)(-2-i)} = i$.

- **a.** $P(i) = i^3 + (3-2i)i^2 + (1-4i)i 1 2i = -i (3-2i) + (1-4i)i 1 2i = 0.$ 2
 - **b.** Dans l'expression $(z-i)(z-z_0)(z+2-i)$, le terme de degré 0 est $iz_0 \times (2-i)$. On en déduit, par identification, que $z_0(1+2i) = -1-2i$.

D'où $z_0 = \frac{-1 - 2i}{1 + 2i} = -1.$

- **c.** $P(z) = 0 \iff (z i)(z + 1)(z + 2 i) = 0 \iff z = i, z = -1 \text{ et } z = -2 + i.$ D'où l'ensemble des solutions $\{i; -1; -2+i\}$.
- a. L'expression complexe de la rotation R est de la forme $z'-z_A=a(z-z_A)$ où a est |3|un nombre complexe tel que |a|=1.

Comme R(B) = C alors $z_C - z_A = a(z_B - z_A)$. On en déduit que $a = \frac{z_C - z_A}{z_B - z_A} =$ $\frac{1+i}{-1+i} = -i.$

D'où l'écriture complexe de R: z' = -i(z+1) - 1 = -iz - i - 1.

b. Comme $a=-i=\mathrm{e}^{-i\frac{\pi}{2}}$, on en déduit que l'angle de rotation de R est $-\frac{\pi}{2}$.

Exercice 2

a. $\det_{(\overrightarrow{i},\overrightarrow{j})}(\overrightarrow{u},\overrightarrow{v}) = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 3$.

Comme le déterminant de la famille $\{\overrightarrow{u}, \overrightarrow{v}\}$ dans la base $(\overrightarrow{i}, \overrightarrow{j})$ est non nul, alors la famille $\{\overrightarrow{u}, \overrightarrow{v}\}$ est également une base de \mathbb{R}^2 .

b.

$$\begin{cases}
\vec{i} + \vec{j} = \overrightarrow{u} \mid E_1 \\
-\vec{i} + 2\vec{j} = \overrightarrow{v}
\end{cases} \stackrel{E_1}{=} \iff
\begin{cases}
3\vec{i} = 2\overrightarrow{u} - \overrightarrow{v} \mid E_1 \\
3\vec{j} = \overrightarrow{u} + \overrightarrow{v}
\end{cases} \stackrel{E_1}{=} 2E_1 - E_2 \iff
\begin{cases}
\vec{i} = \frac{2}{3}\overrightarrow{u} - \frac{1}{3}\overrightarrow{v} \\
\vec{j} = \frac{1}{3}\overrightarrow{u} + \frac{1}{3}\overrightarrow{v}
\end{cases}$$

a. $f(\vec{i}) = f\left(\frac{2}{3}\vec{u} - \frac{1}{3}\vec{v}\right) = \frac{2}{3}f(\vec{u}) - \frac{1}{3}f(\vec{v}) = \frac{2}{3}\vec{u} + \frac{1}{3}\vec{v} = \frac{2}{3}(\vec{i} + \vec{j}) + \frac{1}{3}(-\vec{i} + 2\vec{j}) = \frac{1}{3}\vec{i} + \frac{4}{3}\vec{j}$ $f(\vec{j}) = f\left(\frac{1}{3}\overrightarrow{u} + \frac{1}{3}\overrightarrow{v}\right) = \frac{1}{3}f(\overrightarrow{u}) + \frac{1}{3}f(\overrightarrow{v}) = \frac{1}{3}\overrightarrow{u} - \frac{1}{3}\overrightarrow{v} = \frac{1}{3}(\vec{i} + \vec{j}) - \frac{1}{3}(-\vec{i} + 2\vec{j}) = \frac{2}{3}\vec{i} - \frac{1}{3}\vec{j}$

b.
$$f \circ f(\vec{i}) = f\left(\frac{1}{3}\vec{i} + \frac{4}{3}\vec{j}\right) = \frac{1}{3}f(\vec{i}) + \frac{4}{3}f(\vec{j}) = \frac{1}{3}\left(\frac{1}{3}\vec{i} + \frac{4}{3}\vec{j}\right) + \frac{4}{3}\left(\frac{2}{3}\vec{i} - \frac{1}{3}\vec{j}\right) = \vec{i}$$

$$f \circ f(\vec{j}) = f\left(\frac{2}{3}\vec{i} - \frac{1}{3}\vec{j}\right) = \frac{2}{3}f(\vec{i}) - \frac{1}{3}f(\vec{j}) = \frac{2}{3}\left(\frac{1}{3}\vec{i} + \frac{4}{3}\vec{j}\right) - \frac{1}{3}\left(\frac{2}{3}\vec{i} - \frac{1}{3}\vec{j}\right) = \vec{j}$$

- c. f est un endomorphisme tel que $f \circ f(\vec{i}) = \vec{i}$ et $f \circ f(\vec{j}) = \vec{j}$ où (\vec{i}, \vec{j}) est une base de \mathbb{R}^2 . C'est donc une symétrie vectorielle.
- **d.** La symétrie vectoriel f est telle que $f(\overrightarrow{u}) = \overrightarrow{u}$ et $f(\overrightarrow{v}) = -\overrightarrow{v}$ où $(\overrightarrow{u}, \overrightarrow{v})$ est une base de \mathbb{R}^2 . On en déduit que :
 - la base \mathscr{E} est l'espace vectoriel engendre par \overrightarrow{u} ;
 - la direction \mathscr{D} est l'espace vectoriel engendré par \overrightarrow{v} .

Exercice 3

Partie A

- **a.** $\forall x \in \mathbb{R}, h'(x) = (x-2)e^{2-x}.$
 - **b.** h'(x) s'annule en x=2 et est du signe de x-2 sur \mathbb{R} . h'(x) > 0 pour tout $x \in]2; +\infty[$. h'(x) < 0 pour tout $x \in]-\infty; 2[$.

c.

x	$-\infty$ 2 $+\infty$
h'(x)	- 0 +
h(x)	$+\infty$ 0 1

2 h est strictement décroissante de $]-\infty;2]$ sur $[0;+\infty[$. On en déduit que : $\forall x\in]-\infty;2]$, $0 \le h(x) < +\infty$.

Et, h est strictement croissante de $[2; +\infty[$ sur [0; 1[. On en déduit que : $\forall x \in [2; +\infty[$, $0 \le h(x) \le 1$.

Partie B

- $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x. \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + e^{2-x}) = 1$
- **a.** $\forall x \in \mathbb{R}$, $f'(x) = (1 + e^{2-x}) + x(-e^{2-x}) = (1 x)e^{2-x} + 1 = h(x)$.

b.

•						
	x	$-\infty$		2	A NUES	$+\infty$
	f'(x) = h(x)		+	0	Fight High High	
	f(x)	$-\infty$	PROFISSE!	\$ 4 £	MANUE .	. +∞

- **a.** f est une fonction continue, strictement croissante sur $]-\infty;+\infty[$. Donc f admet une bijection réciproque f^{-1} définie sur $]\lim_{x\to-\infty} f(x);\lim_{x\to+\infty} f(x)[=]-\infty;+\infty[$.
 - b. f et f^{-1} ont même sens de variation. Comme f admet une tangente horizontale en x = 2, alors f^{-1} admet une tangente verticale en f(2) = 4. D'où f^{-1} n'est pas dérivable en f(2) = 4.

On en déduit le tableau de variation de f^{-1} .

x	$-\infty$	$4 + \infty$
$(f^{-1})'(x)$	+	+
$f^{-1}(x)$	$-\infty$	$+\infty$

a. $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} (1 + e^{2-x}) = +\infty.$

On en déduit que la courbe (\mathscr{C}) admet une branche parabolique de direction (Oy) en $-\infty$.

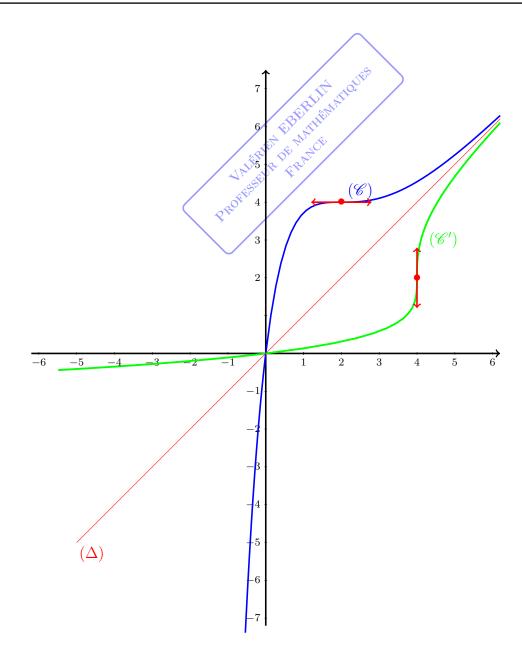
b. $\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} x e^{2-x} = 0.$

On en déduit que la droite d'équation y=x est asymptote à la courbe (\mathscr{C}) en $+\infty$.

c. On a : $f(x) - x = x e^{2-x}$.

 $\forall x > 0, f(x) - x > 0.$ Alors la courbe (\mathscr{C}) est au dessus de la droite (Δ) sur \mathbb{R}_+ .

 $\forall x < 0, f(x) - x < 0$. Alors la courbe (\mathscr{C}) est en dessous de la droite (Δ) sur \mathbb{R}_{-} .



Exercice 4

1

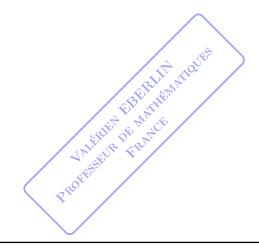
$$p(A \cap B) = p(A) \times p(B)$$
$$= 0, 9 \times 0, 95$$
$$= 0, 855$$

2

$$p(C) = 1 - p(A \cap B)$$

= 1 - 0,855
= 0,145

3



$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

$$= 0, 9 + 0, 95 - 0, 855$$

$$= 0, 995$$

$$p_{Rate}$$

