Correction bac 2019 Série D

Exercice

- a. L'équation $Z^2 4Z + 8$ a pour discriminant réduit $\Delta' = (-2)^2 1 \times 8 = -4 = (2i)^2$. Elle admet donc deux racines distinctes : $Z_1 = \frac{2-2i}{1} = 2 - 2i$ et $Z_2 = \frac{2+2i}{1} = 2 + 2i$.
 - **b.** $|Z_1| = 2\sqrt{2}$. D'où $Z_1 = 2\sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = 2\sqrt{2} \left(\cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4}) \right).$
- **a.** $U = \frac{Z_B}{Z_A} = \frac{2+2i}{2-2i} = \frac{1+i}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = i.$
 - **b.** $\left| \frac{Z_B Z_O}{Z_A Z_O} \right| = |i| = 1$. On en déduit que OA = OB.

 $(\overrightarrow{OA}, \overrightarrow{OB}) \equiv \arg\left(\frac{Z_B - Z_O}{Z_A - Z_O}\right) [2\pi] = \arg(i) [2\pi] = \frac{\pi}{2} [2\pi]$. On en déduit que le triangle OAB est rectangle en OAB

Donc OAB est un triangle rectangle isocèle en O.

- **a.** $Z' = e^{i\frac{\pi}{3}}Z \iff (Z' Z_O) = e^{i\frac{\pi}{3}}(Z Z_O)$ où $Z_O = 0$. 3 f est donc une rotation de centre $Z_O = 0$ et d'angle $\frac{\pi}{2}$
 - **b.** Forme trigonométrique de $Z_{A'}$

D'après 1. b., $Z_A = 2\sqrt{2} e^{-\frac{i\pi}{4}}$.

D'où: $Z_{A'} = e^{\frac{i\pi}{3}} Z_A = e^{\frac{i\pi}{3}} \times 2\sqrt{2} e^{-\frac{i\pi}{4}} = 2\sqrt{2} e^{i\frac{\pi}{12}} = 2\sqrt{2} \left(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12})\right).$

Forme algébrique de $Z_{A'}$

$$Z_{A'} = e^{\frac{i\pi}{3}} Z_A = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) (2 - 2i) = (1 + \sqrt{3}) + i(-1 + \sqrt{3}).$$

c. En identifiant les parties réelles et les parties imaginaires de la forme géométrique et trigonométrique de $Z_{A'}$, on en déduit que : $\cos(\frac{\pi}{12}) = \frac{1+\sqrt{3}}{2\sqrt{2}}$ et $\sin(\frac{\pi}{12}) = \frac{-1+\sqrt{3}}{2\sqrt{2}}$.

D'où
$$\cos(\frac{\pi}{12}) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
 et $\sin(\frac{\pi}{12}) = \frac{-\sqrt{2} + \sqrt{6}}{4}$

Exercice 2

I $f(\vec{i})$ a pour coordonnées : $\begin{cases} x' = 2 \times 1 + 3 \times 0 \neq 2 \text{Little pour Little pour Litt$

 $f(\vec{j})$ a pour coordonnées : $\begin{cases} x' = 2 \times 0 + 3 \times 1 = 3 \\ y' = -0 - 2 \times 1 = -2 \end{cases}$

D'où $f(\vec{i}) = 3\vec{i} - 2\vec{i}$.

2

$$f(\vec{i}) \quad f(\vec{j})$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \leftarrow \text{coordonn\'ee selon } \vec{i}$$

$$\leftarrow \text{coordonn\'ee selon } \vec{j}$$

$$3 \quad f(\vec{V}) \text{ a pour coordonn\'ees} : \begin{cases} x' = 2 \times 3 + 3 \times (-4) = -6 \\ y' = -3 - 2 \times (-4) = 5 \end{cases}$$

$$\text{L'image du vecteur } \vec{V} \text{ est le vecteur } V'(-6;5).$$

$$4 \quad \begin{vmatrix} 2 & 3 \\ -1 & -2 \end{vmatrix} = -1.$$

$$\text{Comme le déterminant de la matrice associ\'ee à l'endomorphis$$

$$\begin{vmatrix} 2 & 3 \\ -1 & -2 \end{vmatrix} = -1$$

Comme le déterminant de la matrice associée à l'endomorphisme f est non nul, alors fest un endomorphisme bijectif (automorphisme).

a. Calcul de $f \circ f(\vec{i})$ 5

$$f \circ f(\vec{i}) = f((2;-1))$$
 a pour coordonnées :
$$\begin{cases} x'' = 2 \times 2 + 3 \times (-1) = 1 \\ y'' = -2 - 2 \times (-1) = 0 \end{cases}$$
D'où $f \circ f(\vec{i}) = \vec{i}$.

Calcul de $f \circ f(\vec{j})$

$$f\circ f(\vec{j})=f\big((3;-2)\big) \text{ a pour coordonn\'ees}: \begin{cases} x''=2\times 3+3\times (-2)=0\\ y''=-3-2\times (-2)=1 \end{cases}.$$

D'où
$$f \circ f(\vec{j}) = \vec{j}$$
.

b. (\vec{i}, \vec{j}) est une base de \mathscr{E} .

De plus, $f \circ f(\vec{i}) = \vec{i}$ et $f \circ f(\vec{j}) = \vec{j}$.

Donc f une symétrie vectorielle.

c. Base de f

La base de f est l'ensemble : $\{\overrightarrow{u} \in \mathscr{E} / f(\overrightarrow{u}) = \overrightarrow{u}\}.$

Soit $\overrightarrow{u}(x,y)$ un élément de la base de f.

$$f(\overrightarrow{u}) = \overrightarrow{u} \iff \begin{cases} 2x + 3y = x \\ -x - 2y = y \end{cases} \iff x + 3y = 0.$$

La base de f est la droite vectorielle d'équation x + 3y = 0.

Direction de f

La direction de f est l'ensemble : $\{\overrightarrow{u} \in \mathcal{E} / f(\overrightarrow{u})\}$

Soit
$$\overrightarrow{u}(x,y)$$
 un élément de la direction de f .
$$f(\overrightarrow{u}) = -\overrightarrow{u} \iff \begin{cases} 2x + 3y = -x \\ -x - 2y = -y \end{cases} \iff \overrightarrow{v} = 0.$$

La direction de f est la droite vectorielle d'équation x + y = 0.

Exercice

Partie I

 $\forall x \in \mathbb{R}_+^*, \quad g'(x) = -\frac{1}{x^2}.$ $\forall x \in \mathbb{R}_+^*, \quad g'(x) < 0.$

2

		ERIE DE STO
x	0	VALIBELIA FR. +∞
g'(x)	_	PROF
g(x)	$+\infty$	0

Partie II

1 a.
$$f(x) = g(x) \iff \frac{\ln x}{x} = 0 \iff x = 1.$$

b. $\forall x \in]0; 1[, f(x) - g(x) = \frac{\ln x}{x} < 0.$ On en déduit que la courbe (\mathscr{C}) est en dessous de la courbe (\mathscr{C}') sur]0; 1[. $\forall x \in]1; +\infty[f(x) - g(x) = \frac{\ln x}{x} > 0.$ On en déduit que la courbe (\mathscr{C}) est en dessus de la courbe (\mathscr{C}') sur $]1; +\infty[.$

2 a.
$$\lim_{x \to 0_+} f(x) = \lim_{u \to +\infty} (-u \ln u + u) = \lim_{u \to +\infty} u \ln u \left(-1 + \frac{1}{\ln u} \right) = -\infty$$
 où l'on a posé $u = \frac{1}{x}$. $\lim_{x \to +\infty} f(x) = 0$.

b.
$$\forall x \in \mathbb{R}_+^*, \quad f'(x) = \frac{\frac{1}{x} \times x - 1 \times \ln x}{x^2} - \frac{1}{x^2} = -\frac{\ln x}{x^2}.$$

Tableau de signes

f'(x) est du signe de $-\ln x$ et s'annule pour x=1.

x	0		1	+∞
$-\ln x$		+	0	OF FAITH ATION
x^2				+tild right (this of right)
f'(x)		+	0 4	ALL LEGILLE LEGILLE
			/ 3	\$' /

c.

Tableau de variation

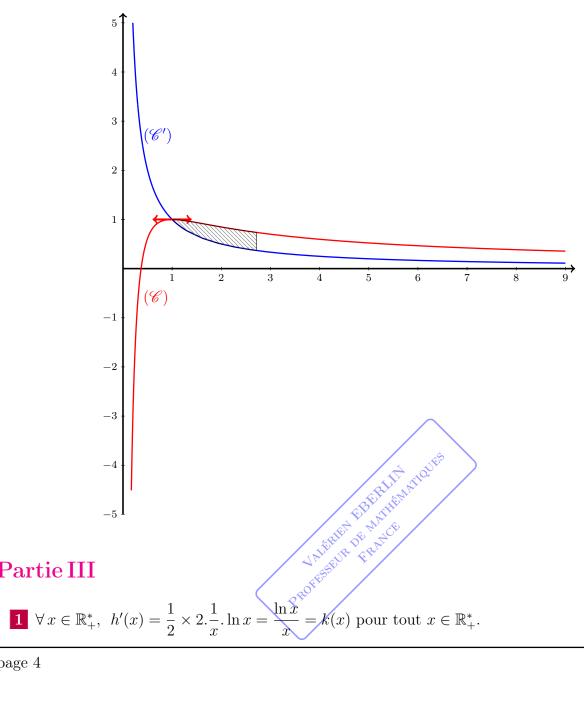
x	0 1	$+\infty$
f'(x)	+ 0 111 1112 115-	
f(x)		0

3 Asymptotes

 $\overline{\lim_{x\to 0_+} f(x)} = -\infty$. La courbe (\mathscr{C}) admet une asymptote verticale d'équation x=0.

 $\lim_{x\to +\infty} f(x) = 0$. La courbe ($\mathscr C$) admet une asymptote horizontale d'équation y=0 en $+\infty$.

Tracés de (\mathscr{C}) et (\mathscr{C}')



Partie III

= k(x) pour tout $x \in \mathbb{R}_+^*$.

Donc h est une primitive de k sur \mathbb{R}_+^* .

Exercice 4

Exercice 4

$$E(X) = \sum_{i=1}^{4} x_i p(X = x_i) = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + a \times \frac{3}{8} + 3 \times b = \frac{3}{8} (1 + a + 8b).$$

2 a.
$$E(X) = \frac{3}{2} \iff \frac{3}{8}(1+a+8b) = \frac{3}{2} \iff a+8b=3.$$
D'autre part, comme p est une probabilité, alors $\frac{1}{8} + \frac{3}{8} + \frac{3}{8} + b = 1$. On en déduit que $b = \frac{1}{8}$.

En remplaçant b par $\frac{1}{8}$ dans l'équation a + 8b = 3, on obtient a = 2.

b.
$$\operatorname{Var}(X) = \sum_{i=1}^{4} x_i^2 p(X = x_i) - \operatorname{E}(X)^2 = 0^2 \times \frac{1}{8} + 1^2 \times \frac{3}{8} + 2^2 \times \frac{3}{8} + 3^2 \times \frac{1}{8} - \left(\frac{3}{2}\right)^2 = \frac{3}{4}.$$

$$\sigma(X) = \sqrt{\operatorname{Var}(X)} = 0,86.$$

J						
	X	$]-\infty;0[$	[0;1[[1;2[[2;3[$[3;+\infty[$
	F(X)	0	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{7}{8}$	1

