Correction bac 2014 Série D

Exercice 1

- 1 Soit z = x + iy un nombre complexe. On appelle conjugué du nombre complexe z, le nombre $\overline{z} = x - iy$.
- a. Posons $Z = r e^{i\theta}$.

Posons
$$Z = r e^{i\theta}$$
.
 $Z^3 = 1 \iff r^3 e^{i3\theta} = 1 e^{i0} \iff \begin{cases} r^3 = 1 \\ 3\theta \equiv 0 [2\pi] \end{cases} \iff \begin{cases} r = 1 \\ \theta_k = \frac{2k\pi}{3}, \ k \in \mathbb{Z} \end{cases}$

D'où les solutions suivantes :

$$z_0 = 1 e^{i\theta_0} = e^{i0} = 1.$$

$$z_1 = 1e^{i\theta_1} = e^{i\frac{2\pi}{3}} = \cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

$$z_2=1\,\mathrm{e}^{i\theta_2}=\mathrm{e}^{i\frac{4\pi}{3}}=\cos(\frac{4\pi}{3})+i\sin(\frac{4\pi}{3})=-\cos(\frac{\pi}{3})-i\sin(\frac{\pi}{3})=-\frac{1}{2}-i\frac{\sqrt{3}}{2}.$$
 b. Montrons que les solutions non réelles, sont conjuguées entre elles.

On a
$$\overline{z_1} = \overline{-\frac{1}{2} + i\frac{\sqrt{3}}{2}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = z_2.$$

- 3 On peut remarquer que $Z_1 = 2 \times z_2$. On en déduit que $Z_1^3 = 2^3 \times z_2^3$. Or z_2 est solution de l'équation (E) c'est à dire $z_2^3 = 1$. Ainsi, $Z_1^3 = 2^3 \times z_2^3 = 8 \times 1 = 8$.
- a. Soit z est une solution de l'équation (E). Alors $z^3=1$.

On en déduit que $(2z)^3 = 8 \times z^3 = 8$. Ce qui signifie que 2z est solution de l'équation (E').

Les solutions de l'équation (E') sont donc les doubles des solutions de l'équation

D'où :
$$z'_0 = 2z_0 = 2$$
 ; $z'_1 = 2z_1 = -1 + i\sqrt{3}$; $z'_2 = 2z_2 = -1 - i\sqrt{3}$.

D'où : $z'_0 = 2z_0 = 2$; $z'_1 = 2z_1 = -1 + i\sqrt{3}$; $z'_2 = 2z_2 = -1 - i\sqrt{3}$. **b.** Comme z'_1 et z'_2 sont des solutions de l'équation (E') alors ${z'_1}^3 = 8$ et ${z'_2}^3 = 8$.

On en déduit que :
$$\left(\frac{z_1'}{z_2'}\right)^3 = \frac{{z_1'}^3}{{z_2'}^3} = \frac{8}{8} = 1.$$

Donc $\frac{z'_1}{z'_2}$ est une solution de l'équation (E).

Exercice

- 1 $f(\vec{i})$ est le vecteur de coordonnées : $\begin{cases} x' = 0 + 0 = 0 \\ y' = 1 \pm 0 + 0 = 1 \end{cases}$ Donc $f(\vec{i}) = \vec{j} + \vec{k}$ $\begin{cases} x' = 1 + 0 = 1 \\ y' = 0 + 1 + 0 = 1 \end{cases}$ Donc $f(\vec{i}) = \vec{i} + \vec{j}$ z' = 0

$$f(\vec{k})$$
 est le vecteur de coordonnées :
$$\begin{cases} x'=0+1=1\\ y'=0+0+1=1\\ z'=0 \end{cases}$$
 Donc $f(\vec{k})=\vec{i}+\vec{j}$

|2|

$$f(\vec{i}) \quad f(\vec{j}) \quad f(\vec{k})$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \leftarrow \text{coordonn\'ee selon } \vec{i}$$

$$\leftarrow \text{coordonn\'ee selon } \vec{k}$$
a. Un sous-ensemble $\mathscr E$ de $\mathbb R^3$ est un $\mathbb R$ sous-espace vectors (i) $\mathscr E \neq \emptyset$

- a. Un sous-ensemble \mathscr{E} de \mathbb{R}^3 est un \mathbb{R} sous-espace vectoriel de \mathbb{R}^3 si :
 - (i) $\mathscr{E} \neq \emptyset$
 - (ii) Pour tous vecteurs $\overrightarrow{u} \in \mathscr{E}$ et $\overrightarrow{v} \in \mathscr{E}$ alors $\overrightarrow{u} + \overrightarrow{v} \in \mathscr{E}$.
 - (iii) Pour tout vecteur $\overrightarrow{u} \in \mathscr{E}$ et pour tout scalaire $\lambda \in \mathbb{R}$, alors $\lambda \overrightarrow{u} \in \mathscr{E}$.
 - **b.** (i) $(0,0,0) \in \mathcal{H} \text{ car } 0 0 + 0 = 0$. D'où $\mathcal{H} \neq \emptyset$.
 - (ii) Soit $\overrightarrow{u}(x,y,z) \in \mathcal{H}$ et $\overrightarrow{v}(x',y',z') \in \mathcal{H}$. $\overrightarrow{u}(x,y,z) \in \mathcal{H} \iff x-y+z=0.$ $\overrightarrow{v}(x', y', z') \in \mathscr{H} \iff x' - y' + z' = 0.$ On a: $(x+x') - (y+y') + (z+z') = \underbrace{(x-y+z)}_{=0} + \underbrace{(x'-y'+z')}_{=0} = 0.$

Donc le vecteur $\vec{u} + \vec{v}$ de coordonnées (x + x', y + y', z + z') appartient à \mathcal{H} .

(iii) Soit $\overrightarrow{u}(x,y,z) \in \mathcal{H}$ et $\lambda \in \mathbb{R}$. $\overrightarrow{u}(x,y,z) \in \mathscr{H} \iff x-y+z=0.$ On a: $\lambda x - \lambda y + \lambda z = \lambda \underbrace{(x - y + z)}_{=0} = 0.$

Donc le vecteur $\lambda \overrightarrow{u}$ de coordonnées $(\lambda x, \lambda y, \lambda z)$ appartient à \mathcal{H} .

4 Soit $(x, y, z) \in \mathbb{R}^3$, un élément du noyau de f. Alors, $f((x, y, z)) = \overrightarrow{0}$.

$$\begin{cases} y+z=0\\ x+y+z=0\\ x=0 \end{cases} \iff \begin{cases} y+z=0\\ x=0 \end{cases} \iff \begin{cases} z=-y\\ x=0 \end{cases}$$

Un vecteur (x, y, z) du noyau s'écrit : (x, y, z) = (0, y, -y) = y(0, 1, -1).

Le noyau de f est la droite vectorielle engendrée par le vecteur $\overrightarrow{e_1} = (0, 1, -1)$, d'équation : $\int y + z = 0$ x=0

5 Soit $(x', y', z') \in \mathbb{R}^3$, un élément de l'image de f. Alors, il existe $(x, y, z) \in \mathbb{R}^3$ tel que f((x, y, z)) = (x', y', z').

$$f((x,y,z)) = (x',y',z') \iff \begin{cases} y+z = x' & \text{for the property } \\ x+y+z = y' & \text{for the property } \end{cases}$$
L'on relève sans difficulté que : $x'-y'+z'=0$.

Les coordonnées (x', y', z') de l'image de f vérifient y' = x' + z'.

D'où : (x', y', z') = (x', x' + z', z') = x'(1, 1, 0) + z'(0, 1, 1).

On en déduit que l'image de f est le plan engendré par les vecteurs $\overrightarrow{e_2}=(1,1,0)$ et $\overrightarrow{e_3} = (0, 1, 1), \text{ d'équation } x - y + z = 0.$

Exercice 3

Exercice 3

Comme $e^x + 1 \neq 0$ pour tout $x \in \mathbb{R}$, alors la fonction $x : \mapsto \frac{e^x}{e^x + 1} - x$ existe pour tout

Donc l'ensemble de définition de g est \mathbb{R}

2 La fonction g est dérivable sur \mathbb{R} .

$$\forall x \in \mathbb{R}, \quad g'(x) = \frac{e^x(e^x + 1) - e^x \times e^x}{(e^x + 1)^2} - 1 = -\frac{e^{2x} + e^x + 1}{(e^x + 1)^2}.$$

Les fonctions $x:\mapsto \mathrm{e}^x$ et $x:\mapsto \mathrm{e}^{2x}$ étant strictement positives, on en déduit que g' est strictement négative sur \mathbb{R} .

3 Tableau de variation de g

$$\lim_{x \to +\infty} \left(\frac{e^x}{e^x + 1} - x \right) = -\infty.$$

$$\lim_{x \to -\infty} \left(\frac{\mathrm{e}^x}{\mathrm{e}^x + 1} - x \right) = +\infty$$

x	$-\infty$	α	$+\infty$
g'(x)		_	
g(x)	+∞	0	

4 La fonction g est continue, strictement décroissante sur $]-\infty$; $+\infty[$.

De plus,
$$0 \in]\lim_{x \to +\infty} g(x); \lim_{x \to -\infty} g(x)[=] - \infty; +\infty[.$$

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in]-\infty$; $+\infty[$ tel que $g(\alpha) = 0$.

On en déduit que $\frac{\mathrm{e}^{\alpha}}{\mathrm{e}^{\alpha}+1}=\alpha$ et α est solution de l'équation $\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}=x$. **a.** Pour tout $x\in\mathbb{R},\ h'(x)=\frac{\mathrm{e}^{x}}{(\mathrm{e}^{x}+1)^{2}}$.

La fonction $x \mapsto e^x$ étant strictement positive sur \mathbb{R} , on en déduit que : $\forall x \in \mathbb{R}, \quad h'(x) > 0.$

b. Tableau de variation de h

$$\lim_{x \to +\infty} \frac{e^x}{e^x + 1} = 1 \quad ; \quad \lim_{x \to -\infty} \frac{e^x}{e^x + 1} = 0$$

x	$-\infty$ $+\infty$
h'(x)	+ 111 31021115
h(x)	0 - ARTHUR DE MARKE

c. h est strictement croissante sur $]-\infty$; $+\infty[$. De plus, $\lim_{x\to -\infty} h(x) = 0$ et $\lim_{x\to +\infty} h(x) = 1$. Donc $: \forall x \in \mathbb{R}, \quad 0 \le h(x) \le 1$.

a. Notons \mathcal{P}_n , la propriété : $u_n \leq 1$. 6

Montrons par récurrence que : $\forall n \in \mathbb{N}, \mathscr{P}_n$.

Initialisation

 $u_0 = 0 \le 1.$

$$u_0 - 0 \le 1$$
.
 $u_1 = h(u_0) = \frac{e^0}{e^0 + 1} = \frac{1}{2} \le 1$.

Donc les propriétés \mathscr{P}_0 et \mathscr{P}_1 sont vérifiées.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $u_n \leq 1$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $u_{n+1} \leq 1$.

On a : $u_n \leq 1$.

D'après 5. c., $h(u_n) \le 1$. D'où $u_{n+1} \le 1$.

La propriété \mathscr{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout n.

b. Notons \mathscr{P}_n , la propriété : $u_n \leq u_{n+1}$.

Montrons par récurrence que : $\forall n \in \mathbb{N}, \mathscr{P}_n$.

Initialisation

$$u_0 = 0$$
 et $u_1 = h(u_0) = \frac{1}{2}$. D'où $u_0 \le u_1$.

Donc la propriété \mathcal{P}_0 est vérifiée.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $u_n \leq u_{n+1}$

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $u_{n+1} \leq u_{n+2}$.

On a $u_n \leq u_{n+1}$.

Comme h est une fonction croissante, alors $h(u_n) \leq h(u_{n+1})$. D'où $u_{n+1} \leq u_{n+2}$. La propriété \mathscr{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout n.

c. La suite (u_n) est une suite croissante et majorée donc elle est convergente.

Montrons que $\lim_{n\to+\infty} u_n = \alpha$

Pour justifier que $\lim_{n\to\infty} u_n = \alpha$, les étapes (i); (ii) et (iii) sont nécessaires.

(i) Montrons d'abord que : $\forall x \in [0; 1], 0 < h'(x) \le \frac{e}{4}$

Soit $x \in [0; 1]$.

Alors $x \ge 0$. On en déduit que $e^x \ge 1$ et $e^x + 1 \ge 2$.

Par croissance de la fonction carré sur [0;1], on a $(e^x+1)^2 \ge 4$.

Par décroissance de la fonction inverse sur]0,1], on a $\frac{1}{(e^x+1)^2} \le \frac{1}{4}$.

D'où
$$\frac{e^x}{(e^x+1)^2} \le \frac{e^x}{4}$$
.

 $e^x \le e \text{ (car } x \le 1). \text{ On en déduit que } 0 < \frac{e^x}{(e^x + 1)^2} \le \frac{e}{4}.$

D'où
$$0 < h'(x) \le \frac{\mathrm{e}}{4}$$

(ii) Montrons que : $\forall n \in \mathbb{N}, |u_{n+1} - \alpha| \leq \frac{e}{4}|u_n - \alpha|$

Soit $n \in \mathbb{N}$.

h est continue et dérivable sur [0;1].

De plus, $|h'(x)| = h'(x) \le \frac{e}{4}$ pour tout $x \in [0, 1]$.

D'après le théorème de l'inégalité des accroissements finis, on a :

$$\forall x \in [0; 1], \ \forall y \in [0; 1], \ |h(x) - h(y)| \le \frac{e}{4}|x - y|$$

Comme $h(\alpha) = \alpha$, on en déduit d'après 5.c., que $\alpha \in [0, 1]$.

De plus, d'après 5. c. et par définition de la suite (u_n) , on en déduit que $u_n \in [0,1]$.

Ainsi, on peut appliquer l'inégalité précédente en $x = u_n$ et $y = \alpha$.

On a alors:

$$|h(u_n) - h(\alpha)| \le \frac{e}{4}|u_n - \alpha|$$

Mais $h(u_n) = u_{n+1}$ par définition de la suite (u_n) et rappelons que $h(\alpha) = \alpha$.

On en déduit que : $\forall n \in \mathbb{N}, |u_{n+1} - \alpha| \leq \frac{e}{4}|u_n - \alpha|$.

(iii) Montrons que :
$$\forall n \in \mathbb{N}^*, |u_n - \alpha| \le \left(\frac{e}{4}\right)^n |u_0 - \alpha|$$

Soit \mathscr{P}_n , la propriété : $|u_n - \alpha| \leq \left(\frac{\mathrm{e}}{4}\right)^n |u_0 - \alpha|$.

Montrons par récurrence que : $\forall n \in \mathbb{N}^*, \mathscr{P}_n$.

Initialisation

D'après (ii), on a $|u_1 - \alpha| \leq \frac{e}{4}|u_0 - \alpha|$.

La propriété \mathscr{P}_1 est vérifiée.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $|u_n|^{\frac{1}{2}} \alpha| \leq \left(\frac{e}{4}\right)^n |u_0 - \alpha|$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $|u_{n+1} - \alpha| \leq \left(\frac{e}{4}\right)^{n+1} |u_0 - \alpha|$.

D'après (ii), $|u_{n+1} - \alpha| \leq \frac{e}{4}|u_n - \alpha|$ et par hypothèse de récurrence, $|u_n - \alpha| \leq \frac{e}{4}|u_n - \alpha|$

Ainsi,
$$|u_{n+1} - \alpha| \le \frac{e}{4} |u_n - \alpha| \le \frac{e}{4} \left(\frac{e}{4}\right)^n |u_0 - \alpha| = \left(\frac{e}{4}\right)^{n+1} |u_0 - \alpha|$$

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

 $\forall n \in \mathbb{N}, \ 0 \leq |u_n - \alpha| \leq \left(\frac{e}{4}\right)^n |u_0 - \alpha|.$ Par passage à la limite, $0 \leq \lim_{n \to +\infty} |u_n - \alpha| \leq \lim_{n \to +\infty} |u_n - \alpha| = 0$ Par conséquent, $\lim_{n \to +\infty} |u_n - \alpha| = 0$ et donc $\lim_{n \to +\infty} u_n = \alpha$.

Exercice

Nous noterons $(x_i, n_{i\bullet})$, les couples qui définissent la distribution marginale de la variable x, et $(y_i, n_{\bullet i})$ les couples qui définissent la distribution marginale de la variable y.

Dans ce cas, on a : $\sum_{i} n_{i \bullet} = \sum_{i} n_{\bullet j}$ que l'on pose égal à N.

1

x	-1	0	2
$n_{i\bullet}$	3	a	2

y	1	3
$n_{\bullet j}$	3	a+2

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i} = \frac{3 \times (-1) + a \times 0 + 2 \times 2}{a+5} = \frac{1}{5+a}.$$

$$\overline{y} = \frac{1}{N} \sum_{j=1}^{2} n_{\bullet j} y_{j} = \frac{3 \times 1 + (a+2) \times 3}{5+a} = \frac{3a+9}{a+5}.$$

On cherche a tel que :

$$\begin{cases} \frac{1}{5+a} = \frac{1}{6} \\ \frac{3a+9}{a+5} = 2 \end{cases}$$
 D'où $a = 1$.

3 Pour a=1, $\overline{x}=\frac{1}{6}$ et $\overline{y}=2$.

<u>Variance de</u>

$$V(x) = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i}^{2} - \overline{x}^{2} = \frac{3(-1)^{2} + 1 \times 0^{2} + 2 \times 2^{2}}{6} - \left(\frac{1}{6}\right)^{2} = \frac{65}{36}$$

Variance de y.

$$V(y) = \frac{1}{N} \sum_{j=1}^{2} n_{\bullet j} y_{j}^{2} - \overline{y}^{2} = \frac{3 \times 1^{2} + 3 \times 3^{2}}{6} - 2^{2} = 1$$

$$V(y) = \frac{1}{N} \sum_{j=1}^{2} n_{\bullet j} y_{j}^{2} - \overline{y}^{2} = \frac{3 \times 1^{2} + 3 \times 3^{2}}{6} - 2^{2} = 1$$

$$\underline{\text{Covariance de la série } (x, y)}.$$

$$\underline{\text{Cov}(x, y)} = \frac{1}{N} \sum_{i=1}^{3} \sum_{j=1}^{2} n_{ij} x_{i} y_{j} - \overline{x}.\overline{y} \quad \text{où } n_{ij} \text{ est le coefficient associé au couple } (x_{i}, y_{j})$$

$$= \frac{-1 - 6 + 0 + 0 + 4 + 0}{6} - \frac{1}{6} \times 2 = \frac{5}{6}$$