Correction bac 2013 Série D

AMERICA DE MARINEMARIO.
SSEP

Exercice

Nous noterons $(x_i, n_{i\bullet})$, les couples qui définissent la distribution marginale de la variable X, et $(y_j, n_{\bullet j})$ les couples qui définissent la distribution marginale de la variable Y.

Dans ce cas, on a : $\sum_{i} n_{i \bullet} = \sum_{i} n_{\bullet j}$ que l'on pose égal à N.

|1|

X	-2	-1	0
$n_{i\bullet}$	6	8	5

Y	-1	0	2
$n_{ullet j}$	9	6	4

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i} = \frac{6 \times (-2) + 8 \times (-1) + 5 \times 0}{19} = -\frac{20}{19}.$$

$$\overline{Y} = \frac{1}{N} \sum_{j=1}^{3} n_{\bullet j} y_j = \frac{9 \times (-1) + 6 \times 0 + 4 \times 2}{19} = \frac{-1}{19}.$$

Le point moyen a pour coordonnées $G\left(-\frac{20}{10}, -\frac{1}{10}\right)$

3 L'équation de régression linéaire de Y en X est donnée par l'équation :

$$Y = aX + b$$
 où $a = \frac{\operatorname{Cov}(X, Y)}{\operatorname{V}(X)}$ et $b = \overline{Y} - a\overline{X}$.

$$Cov(X,Y) = \frac{1}{N} \sum_{i=1}^{3} \sum_{j=1}^{3} n_{ij} x_i y_j - \overline{X}.\overline{Y}$$
 où n_{ij} est le coefficient associé au couple (x_i, y_j)

$$= \frac{8+0-8+3+0+0+0+0+0}{19} - \frac{20}{19^2} = \frac{37}{361}$$

$$V(X) = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i}^{2} - \overline{X}^{2} = \frac{6(-2)^{2} + 8 \times (-1)^{2} + 5 \times 0^{2}}{19} - \left(-\frac{20}{19}\right)^{2} = \frac{208}{361}$$

Ainsi,
$$a = \frac{\text{Cov}(X, Y)}{\text{V}(X)} = \frac{37}{208}$$
 et $b = \frac{-1}{19} - \frac{37}{208} \times \frac{-20}{19} = \frac{7}{52}$.

D'où l'équation de la droite de régression linéaire $Y = \frac{37}{208}X + \frac{7}{52}$.

4 Le coefficient de corrélation linéaire entre X et Y est $\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{V}(X)}\sqrt{\text{V}(Y)}}$

$$V(Y) = \frac{1}{N} \sum_{j=1}^{3} n_{\bullet j} y_{j}^{2} - \overline{Y}^{2} = \frac{9 \times (-1)^{2} + 6 \times 0^{2} + 4 \times 2^{2}}{19} - \left(\frac{-1}{19}\right)^{2} = \frac{474}{361}.$$
 D'où $\rho_{X,Y} = \frac{\frac{37}{361}}{\sqrt{\frac{208}{361}}\sqrt{\frac{474}{361}}} = 0,117.$

D'où
$$\rho_{X,Y} = \frac{\frac{37}{361}}{\sqrt{\frac{208}{361}}\sqrt{\frac{474}{361}}} = 0,117.$$

Exercice 2

1 Posons $Z = r e^{i\theta}$.

Posons
$$Z \equiv r e^{-1}$$
.
$$Z^{3} = -8 \iff r^{3} e^{i3\theta} = 8 e^{i\pi} \iff \begin{cases} r^{3} = 8 \\ 3\theta \equiv \pi [2\pi]^{3} \end{cases} \quad \begin{cases} r = 2 \\ \theta_{k} = \frac{\pi}{3} + \frac{2k\pi}{3}, \ k \in \mathbb{Z} \end{cases}$$

D'où les solutions suivantes :

$$z_0 = 2e^{i\theta_0} = 2e^{i\frac{\pi}{3}} = 2\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right) = 1 + i\sqrt{3}.$$

$$z_1 = 2e^{i\theta_1} = 2e^{i\pi} = -2.$$

$$z_1 = 2e^{i\theta_2} = 2e^{i\frac{5\pi}{3}} = 2\left(\cos(2\pi - \frac{\pi}{3}) + i\sin(2\pi - \frac{\pi}{3})\right) = 1 - i\sqrt{3}.$$

a. $U = \frac{Z_C - Z_A}{Z_B - Z_A} = \frac{-2i\sqrt{3}}{-3 - i\sqrt{3}} = \frac{(-2i\sqrt{3})(-3 + i\sqrt{3})}{(-3 - i\sqrt{3})(-3 + i\sqrt{3})} = \frac{1}{2} + i\frac{\sqrt{3}}{2}.$

D'où |U|=1 et $\arg(U)=\frac{\pi}{3}[2\pi]$. On peut choisir comme argument de U la valeur

b. Comme $\left|\frac{Z_C - Z_A}{Z_B - Z_A}\right| = 1$ alors $|Z_C - Z_A| = |Z_B - Z_A|$. D'où AC = AB.

D'autre part, $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \arg\left(\frac{Z_C - Z_A}{Z_B - Z_A}\right) [2\pi] \equiv \frac{\pi}{2} [2\pi].$

Le triangle ABC est isocèle en A et a un angle de mesure $\frac{\pi}{3}$. C'est donc un triangle équilatéral.

a. Soit Z' = aZ + b l'expression complexe de la rotation S.

$$\begin{cases} S(A) = C \\ S(C) = B \end{cases} \iff \begin{cases} Z_C = aZ_A + b & (1) \\ Z_B = aZ_C + b & (2) \end{cases}$$

En multipliant l'équation (2) par -1 puis en ajoutant membre à membre la nouvelle équation obtenue et l'équation (1), il s'ensuit que :

$$a = \frac{Z_C - Z_B}{Z_A - Z_C} = \frac{3 - i\sqrt{3}}{2i\sqrt{3}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

En remplaçant a par $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ dans l'expression $b = Z_C - aZ_A$, on trouve :

$$b = 1 - i\sqrt{3} - (-\frac{1}{2} - i\frac{\sqrt{3}}{2})(1 + i\sqrt{3}) = 0.$$

D'où l'expression de la rotation $S:Z'=\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)Z.$ $Z'=\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)Z=\mathrm{e}^{i(\frac{4\pi}{3})}Z.$

b.
$$Z' = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)Z = e^{i(\frac{4\pi}{3})}Z.$$

S est de la forme $Z'-Z_O=a(Z-Z_O)$ avec $a=e^{i(\frac{4\pi}{3})}$ et $Z_O=0$. C'est donc la rotation de centre $Z_O=0$ et d'angle $\frac{4\pi}{3}$.

Problème

Partie A

$$g'(x) = -\frac{2x^2 + 1}{x}$$
 pour tout $x \in]0, +\infty[$.

$$\overline{g'(x)} < 0$$
 pour tout $x \in]0, +\infty[$.

$$\overline{\lim_{x \to 0_+} g(x) = +\infty} \ ; \ \lim_{x \to +\infty} g(x) = -\infty$$

La fonction	n g est dériva	ble sur $]0, +\infty[$ et o	na:
$g'(x) = -\frac{2}{3}$	$\frac{2x^2+1}{x}$ pour	tout $x \in]0, +\infty[$.	53thall that
$\frac{\text{Signe de } g'}{g'(x) < 0 \text{ p}}$	$\begin{array}{c} \cdot \\ \text{our tout } x \in \end{array}$	$]0,+\infty[.$	TE TE MANUEL
Tableau de	variation	atiss!	\$C 4/
$\lim_{x \to 0_+} g(x) =$	$=+\infty$; $\lim_{x\to -\infty}$	tout $x \in]0, +\infty[$ et on tout $x \in]0, +\infty[$. $ 0, +\infty[$ $ 0, +\infty[$ $ -\infty]_{ROTRIGE} $ $ 1$	
x	0	1	$+\infty$
g'(x)		_	
g(x)	+∞	0	~ ~

2 g est strictement décroissante sur $]0; +\infty[$.

De plus,
$$g(1) = 0$$
.

On en déduit que :

$$g(x) > 0$$
 pour tout $x \in]0;1[$.

$$g(x) < 0$$
 pour tout $x \in]1; +\infty[$.

Partie B

1 La fonction $x : \mapsto 1 + x - e^{1-x}$ existe sur $] - \infty; 1];$

la fonction
$$x: \mapsto \frac{2x - x^2 + \ln x}{x}$$
 existe sur $]1; +\infty[$.

Donc l'ensemble de définition de f est \mathbb{R} .

2 a. Continuité de la fonction f au point x=1

$$\lim_{x \to 1_{-}} f(x) = f(1) = 1.$$

$$\lim_{x \to 1_+} f(x) = \lim_{x \to 1_+} \frac{2x - x^2 + \ln x}{x} = 1.$$

Comme $\lim_{x\to 1_-} f(x) = \lim_{x\to 1_+} f(x) = f(1)$, alors la fonction f est continue au point

$$x = 1.$$

$$\frac{\text{Dérivabilité de la fonction } f \text{ au point } x = 1}{\lim_{x \to 1_{-}} \frac{f(x) - f(1)}{x - 1}} = \lim_{x \to 1_{-}} \frac{x - e^{1-x}}{x - 1}$$

$$= 1 + \lim_{u \to 0_{+}} \frac{e^{u} - 1}{u} \text{ où l'on a posé } u = 1 - x$$

$$= 2$$

$$\lim_{x \to 1_{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1_{+}} \frac{x - x^{2} + \ln x}{x(x - 1)}$$

$$= -1 + \lim_{x \to 1_{+}} \frac{\ln x}{x(x - 1)}$$

$$= -1 + \lim_{x \to 1_{+}} \frac{\ln x - \ln 1}{(x - 1)}$$

$$= 0$$

Comme $\lim_{x \to 1_{-}} \frac{f(x) - f(1)}{x - 1} \neq \lim_{x \to 1_{+}} \frac{f(x) - f(1)}{x - 1}$, alors la fonction f n'est pas dérivable au point x = 1.

- **b.** Pour tout $x \in]1; +\infty[, f'(x) = \frac{g(x)}{x^2}]$.
- 3 f est dérivable sur $]-\infty;1[\cup]1;+\infty[$ et on a : $\forall x \in]-\infty; 1[, f'(x) = 1 + e^{1-x}.$ $\forall x \in]1; +\infty[, \quad f'(x) = \frac{g(x)}{x^2}.$

Signe de f'

f'(x) > 0 pour tout $x \in]-\infty;1[$;

f'(x) est du signe de g(x) sur $]1; +\infty[$. Par conséquent, f'(x) < 0 pour tout $x \in]1; +\infty[$.

Tableau de variation de f

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (1 + x - e^{1-x}) = -\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(2 - x + \frac{\ln x}{x} \right) = -\infty$$

x	$-\infty$ 1 $+\infty$
f'(x)	+ –
f(x)	$-\infty$ 1 $-\infty$

4 (Δ) asymptote à la courbe (\mathscr{C})

Comme $\lim_{x \to +\infty} (f(x) - (2-x)) = \lim_{x \to +\infty} \frac{\ln x}{x} = 0$, alors la droite (Δ) d'équation y = -x + 2est asymptote à la courbe (\mathscr{C}) en $+\infty$.

$$f(x) - (2-x) = \frac{\ln x}{x}.$$

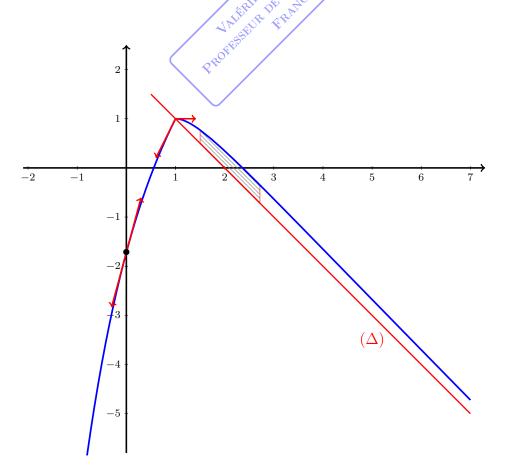
est asymptote à la courbe (\mathscr{C}) en $+\infty$. Position de (\mathscr{C}) par rapport à (Δ) $f(x)-(2-x)=\frac{\ln x}{x}.$ Comme la fonction $x:\mapsto \frac{\ln x}{x}$ est strictement positive pour x>1., alors la courbe (\mathscr{C}) est au dessus de la droite (Δ) pour x > 1

5 L'équation de la tangente (\mathcal{T}) à la courbe (\mathcal{C}) en x=0 est donnée par la formule : y = f'(0)(x - 0) + f(0). D'où $(\mathcal{T}) : y = (1 + e)x + 1 - e$.

 $\lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\left(\frac{1}{x}+1-\frac{\mathrm{e}^{1-x}}{x}\right)=1-\mathrm{e}\lim_{x\to -\infty}\frac{\mathrm{e}^{-x}}{x}=1+\mathrm{e}\lim_{u\to +\infty}\frac{\mathrm{e}^u}{u}=+\infty \text{ où l'on a posé }u=-x.$

La courbe (\mathscr{C}) admet une branche parabolique de direction (Oy) en $-\infty$.

• La droite (Δ) d'équation y=2-x est une asymptote oblique à la courbe ($\mathscr C$) en $+\infty$.



8 $\mathscr{A}(D) = \int_{\frac{3}{2}}^{e} \left[f(x) - (2 - x) \right] dx = \int_{\frac{3}{2}}^{e} \frac{\ln x}{x} dx.$ Si l'on choisit $\begin{cases} u(x) = \ln x \\ v'(x) = \frac{1}{x} \end{cases}$ alors on peut prendre $\begin{cases} u'(x) = \frac{1}{x} \\ v(x) = \ln x \end{cases}$

Il vient, en intégrant par parties : $\int_{\frac{3}{2}}^{e} \frac{\ln x}{x} dx = \left[(\ln x)^{2} \right]_{\frac{3}{2}}^{e} - \int_{\frac{3}{2}}^{e} \frac{\ln x}{x} dx.$

D'où $\mathscr{A}(D) = \frac{1}{2} \left[(\ln x)^2 \right]_{\frac{3}{2}}^e = \frac{1 - \left(\ln \frac{3}{2} \right)^2}{2} \text{ u.a} = 2 \left[1 - \left(\ln \frac{3}{2} \right)^2 \right] \text{cm}^2$