Correction bac 2012 Série D

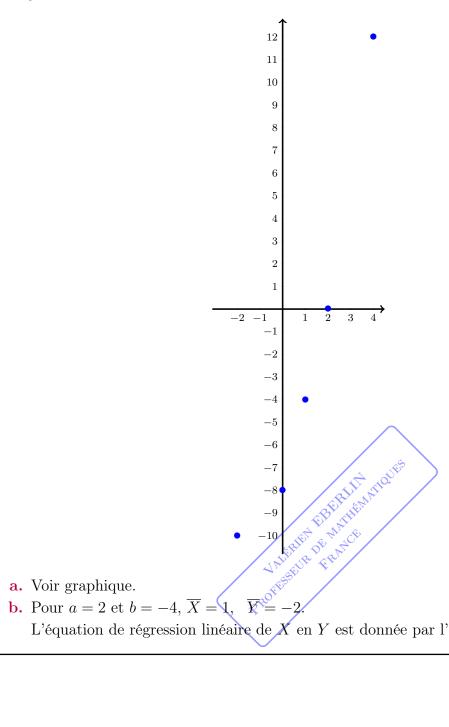
Exercice 1

Exercice 1

1
$$\overline{X} = \frac{1}{5} \sum_{i=1}^{5} x_i = \frac{a+3}{5}$$
 et $\overline{Y} = \frac{1}{5} \sum_{i=1}^{5} y_i = \frac{b-6}{5}$

Les coordonnées du point moyen vérifient :
$$\left(\frac{a+3}{5} = 1\right)$$

$$\begin{cases} \frac{a+3}{5} = 1\\ \frac{b-6}{5} = -2 \end{cases}$$
 D'où $a=2$ et $b=-4$.



L'équation de régression linéaire de X en Y est donnée par l'équation :

$$X = aY + b \text{ où } a = \frac{\text{Cov}(X,Y)}{\text{V}(Y)} \text{ et } b = \overline{X} - a\overline{Y}.$$

$$\text{Cov}(X,Y) = \frac{1}{5} \sum_{i=1}^{5} x_i y_i - \overline{X}.\overline{Y}$$

$$= \frac{1}{5} (-2 \times (-10) + 0 \times (-8) + 1 \times (-4) + 2 \times 0 + 4 \times 12) - 1 \times (-2)$$

$$= 14,8$$

$$\text{V}(Y) = \frac{1}{5} \sum_{i=1}^{5} y_i^2 - \overline{Y}^2$$

$$= \frac{1}{5} ((-10)^2 + (-8)^2 + (-4)^2 + 0^2 + 12^2) - (-2)^2$$

$$= 60,8$$

D'où :
$$a = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)} = 0,243 \text{ et } b = 1 - 0,243 \times (-2) = 1,486.$$

L'équation de la droite de régression linéaire de X en Y est : X = 0,243Y + 1,486.

c. Le coefficient de corrélation linéaire entre X et Y est : $\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$.

$$V(X) = \frac{1}{5} \sum_{i=1}^{5} x_i^2 - \overline{X}^2$$
$$= \frac{1}{5} ((-2)^2 + 0^2 + 1^2 + 2^2 + 4^2) - 1^2$$
$$= 4$$

D'où
$$\rho_{X,Y} = \frac{14,8}{\sqrt{4}\sqrt{60,8}} = 0,949.$$

Interprétation

Le coefficient de corrélation linéaire est proche de 1. Cela indique qu'il existe une relation linéaire forte entre les variables X et Y. Ce coefficient est également positif, cela signifie que lorsqu'une variable augmente, l'autre variable augmente aussi.

Exercice 2

a. Soit $z = r e^{i\theta}$, une solution de l'équation (E) $z^2 = -8\sqrt{3} + 8i \iff r^2 e^{i2\theta} = 16 e^{i\frac{5\pi}{6}} \iff \begin{cases} r^2 = 16 \\ 2\theta = \frac{5\pi}{6} \end{cases} [2\pi] \iff \begin{cases} r = 4 \\ \theta_k = \frac{5\pi}{12} + k\pi, \ k \in \mathbb{Z} \end{cases}$

D'où les solutions :

$$z_1 = 4 e^{i\theta_0} = 4 e^{i\frac{5\pi}{12}} = 4 \left(\cos(\frac{5\pi}{12}) + i\sin(\frac{5\pi}{12})\right).$$

$$z_2 = 4e^{i\theta_1} = 4e^{i(\frac{5\pi}{12} + \pi)} = 4\left(\cos(\frac{5\pi}{12} + \pi) + i\sin(\frac{5\pi}{12} + \pi)\right) = 4\left(-\cos(\frac{5\pi}{12}) - i\sin(\frac{5\pi}{12})\right).$$

b. On cherche un nombre complexe z = x + iy tel que $z^2 = -8\sqrt{3} + 8i$. $x^2 - y^2 + 2ixy = -8\sqrt{3} + 8i$. Par identification des parties réelles et des parties imaginaires, $x^2 - y^2 = -8\sqrt{3}$ et $xy \neq 4$.

D'autre part, comme $|z|^2 = |-8\sqrt{3} + 8i|$ alors $x^2 + y^2 = 16$.

On obtient le système d'équations : $\begin{cases} x^2 - y^2 = -8\sqrt{3} \\ x^2 + y^2 = 16 \end{cases} (2)$ En ed 3:

En additionnant membre à membre l'équation (1) et (2), on obtient :

$$x^2 = 8 - 4\sqrt{3} = (\sqrt{2} - \sqrt{6})^2$$
. On en déduit que $x = \sqrt{2} - \sqrt{6}$ ou $x = -\sqrt{2} + \sqrt{6}$;

En multipliant l'équation (1) par -1, puis en ajoutant membre à membre la nouvelle équation obtenue et l'équation (2), on obtient $y^2 = 8 + 4\sqrt{3} = (\sqrt{2} + \sqrt{6})^2$. On en déduit que $y = \sqrt{2} + \sqrt{6}$ ou $y = -\sqrt{2} - \sqrt{6}$;

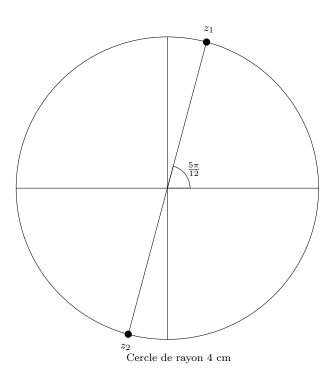
L'équation (3) nous indique que x et y sont de même signe.

Les solutions de l'équation $z^2 = -8\sqrt{3} + 8i$ sont : $-\sqrt{2} + \sqrt{6} + i(\sqrt{2} + \sqrt{6})$ et $\sqrt{2} - \sqrt{6} - i(\sqrt{2} + \sqrt{6}).$

En comparant les signes des parties réelles et imaginaires de z_1 et z_2 , on en déduit

$$z_1 = -\sqrt{2} + \sqrt{6} + i(\sqrt{2} + \sqrt{6})$$
 et $z_2 = \sqrt{2} - \sqrt{6} - i(\sqrt{2} + \sqrt{6})$.

|2|



sin(\frac{1}{1}).

PROPERTIES HIR DE MARLED MED AND CE MENTON DE LE MARLED MEDITALISME DE LE MARLED MED 3 De l'égalité $-\sqrt{2} + \sqrt{6} + i(\sqrt{2} + \sqrt{6}) = 4\left(\cos(\frac{5\pi}{12}) + i\sin(\frac{5\pi}{12})\right)$, on en déduit que : $\cos(\frac{5\pi}{12}) = \frac{-\sqrt{2}+\sqrt{6}}{4}$ et $\sin(\frac{5\pi}{12}) = \frac{\sqrt{2}+\sqrt{6}}{4}$.

Problème

Partie A

1 L'équation caractéristique associée à l'équation différentielle y'' + 2y' + y = 0 est : $r^2 +$ 2r + 1 = 0. Elle admet une racine double $r_1 = r_2 = -1$.

Donc la solution générale de l'équation différentielle est : $y(x) = (c_1x + c_2)e^{-x}$ où c_1, c_2 sont des constantes réelles quelconques.

2 u est de la forme $u(x) = (c_1x + c_2) e^{-x}$ avec u(0) = 1 et u'(0) = 0.

$$\begin{cases} u(0) = 1 \\ u'(0) = 0 \end{cases} \iff \begin{cases} c_2 e^{-0} = 1 \\ c_1 e^{-0} - c_2 e^{-0} = 0 \end{cases} \Leftrightarrow \begin{cases} c_2 = 1 \\ c_1 = 1 \end{cases}$$

La solution particulière est la fonction u définie pour tout $x \in \mathbb{R}$ par : $u(x) = (x+1)e^{-x}$.

Partie B

- 3 La fonction $x \mapsto (x+1) e^{-x}$ existe sur $]-\infty;0]$. La fonction $x \mapsto 1 - 2x + x \ln x$ existe si et seulement si x > 0. Donc la fonction f est définie sur \mathbb{R} .
- 4 Continuité en 0 $\lim_{x \to 0} f(x) = f(0) = (0+1)e^{-0} = 1$

 $\lim_{x \to 0_+} f(x) = \lim_{x \to 0_+} (1 - 2x + x \ln x) = 1.$

Comme $\lim_{x\to 0_-} f(x) = f(0) = \lim_{x\to 0_+} f(x)$, la fonction f est continue en 0.

Dérivabilité en 0

$$\lim_{x \to 0_{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{-}} \frac{(x+1)e^{-x} - 1}{x} = 1 + \lim_{x \to 0_{-}} \frac{e^{-x} - 1}{x} = 1 - \lim_{X \to 0_{+}} \frac{e^{X} - 1}{X} = 1 - 1 = 0$$
où l'on a posé $X = -x$.

$$\lim_{x \to 0_+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_+} (-2 + \ln x) = -\infty.$$

Comme $\lim_{x\to 0_+} \frac{f(x)-f(0)}{r}$ n'est pas une valeur finie, on en déduit que f n'est pas dérivable en 0.

5 La fonction f est dérivable sur $]-\infty;0[\cup]0;+\infty[$ et on a :

$$\forall x < 0, \quad f'(x) = -x e^{-x}.$$

$$\forall x > 0, \quad f'(x) = -1 + \ln x.$$

Signe de f'

$$f'(x) = 0 \iff -1 + \ln x = 0 \iff x = e$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x+1) e^{-x} = -\infty.$$

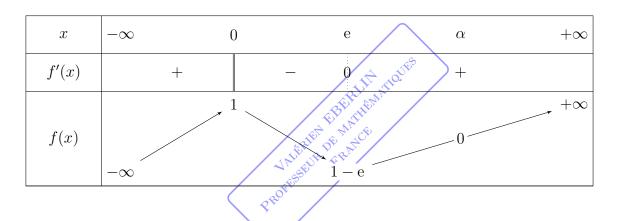
$$f'(x) < 0 \text{ pour tout } x \in]0; e[;$$

$$f'(x) > 0 \text{ pour tout } x \in]e; +\infty[.$$

$$f'(x) > 0 \text{ pour tout } x \in]-\infty; 0[;$$

$$\frac{\text{Tableau de variation}}{\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x+1) e^{-x} = -\infty}.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \ln x \left(\frac{1}{x \ln x} + \frac{2}{\ln x} + 1\right) = +\infty.$$



6

Point d'intersection avec l'axe des abscisses pour $x \leq 0$

Si
$$x \le 0$$
, $f(x) = 0 \iff (x+1)e^{-x} = 0$
 $\iff x = -1$

Le point d'intersection de la courbe (\mathscr{C}) avec l'axe des abscisses est le point (-1,0).

Équation de la tangente

L'équation de la tangente (\mathscr{T}) à (\mathscr{C}) est donnée par la formule y=f'(-1)(x+1)+f(-1) D'où $(\mathscr{T}):y=\operatorname{e} x+\operatorname{e}.$

7 $f(6) \approx -0.25$; $f(7) \approx 0.62$.

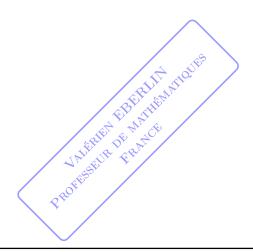
La fonction f est continue, strictement croissante sur [6; 7].

De plus, $f(6) \times f(7) < 0$.

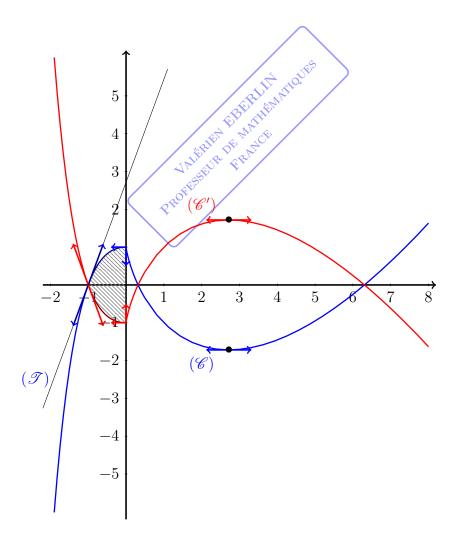
D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in]6$; 7[tel que $f(\alpha) = 0$.

a. $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} e^{-x} \left(1 + \frac{1}{x} \right) = +\infty$. La courbe ($\mathscr C$) admet une branche parabolique de direction (Oy) en $-\infty$.

 $\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\left(\frac{1}{x}-2+\ln x\right)=+\infty. \text{ La courbe }(\mathscr{C}) \text{ admet une branche parabolique de direction }(Oy) \text{ en }+\infty.$



b.



Partie C

9 a.

x	$-\infty$	0	е	α	$+\infty$
h'(x)	_		+ 0	_	
h(x)	$+\infty$	-1	-1+e	0	$-\infty$

b. Voir graphique. **c.** $\mathscr{A} = \int_{-1}^{0} \left[f(x) - h(x) \right] dx = 2 \int_{-1}^{0} (1+x) e^{-x} dx.$ Si l'on choisit $\begin{cases} u(x) = 1 + x \\ v'(x) = e^{-x} \end{cases}$ alors on peut prendre $\begin{cases} u'(x) = 1 \\ v(x) = -e^{-x} \end{cases}$

Il vient, en intégrant par parties :

$$\mathscr{A} = 2 \int_{-1}^{0} (1+x) e^{-x} dx = -2 \Big[(1+x) e^{-x} \Big]_{-1}^{0} + 2 \int_{-1}^{0} e^{-x} dx.$$
 D'où $\mathscr{A} = 2(-2+e)$ u.a = $8(-2+e)$ cm²

All Hills Hil

