Correction bac 2011 Série D

Exercice 1

1 La matrice de l'application f est :/

$$\begin{pmatrix} -1 & a & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

2 L'endomorphisme f est bijectif si le déterminant de sa matrice associée est non nul.

$$\begin{vmatrix} -1 & a & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{vmatrix} = a - 1$$

D'où, f est bijectif si $a \neq 1$.

3 a. $\mathscr{B} = \{ \overrightarrow{u} \in \mathbb{R}^3 ; f(\overrightarrow{u}) = \overrightarrow{u} \}.$

Soit
$$\overrightarrow{u}(x,y,z) \in \mathbb{R}^3$$
 un vecteur de \mathscr{B} . Alors x,y,z vérifient le système (S) :
$$\begin{cases} x = -x + y + 2z \\ y = x + 2y + z \\ z = x + y \end{cases}$$

$$(S) \iff \begin{cases} -2x + y + 2z = 0 \\ x + y + z = 0 \\ x + y - z = 0 \end{cases} | E_1 \\ E_2 \iff \begin{cases} -2x + y + 2z = 0 \\ 3y + 4z = 0 \\ E_3 = E_1 + 2E_2 \iff \begin{cases} x = 0 \\ z = 0 \\ y = 0 \end{cases}$$

L'ensemble des vecteurs invariants par l'endomorphisme f est l'ensemble $\{(0,0,0)\}$

b. Ker $f = {\overrightarrow{u} \in \mathbb{R}^3 ; f(\overrightarrow{u}) = \overrightarrow{0}}$.

Soit $\overrightarrow{u}(x,y,z) \in \mathbb{R}^3$ un vecteur de Ker f. Alors x,y,z vérifient le système : $\begin{cases} -x+y+2z=0\\ x+2y+z=0\\ x+y=0 \end{cases}$

$$\begin{cases} -x + y + 2z = 0 \\ x + 2y + z = 0 \\ x + y = 0 \end{cases} E_{1} \iff \begin{cases} -x + y + 2z = 0 \\ E_{2} \\ 2y + 2z = 0 \end{cases} E_{1} \iff \begin{cases} -x + y + 2z = 0 \\ E'_{2} = E_{1} + E_{2} \\ E'_{3} = E_{1} + E_{3} \end{cases} \iff \begin{cases} -x + y + 2z = 0 \\ y = -z \end{cases} \iff \begin{cases} x = z \\ y = -z \end{cases}$$

Finalement, $\overrightarrow{u}(x, y, z) \in \text{Ker } f \iff \begin{cases} x = z \\ y = -z \end{cases}$

Finalement, $\overrightarrow{u}(x,y,z) \in \operatorname{Ker} f \iff \begin{cases} x-z \\ y=-z \end{cases}$ Le vecteur \overrightarrow{u} de $\operatorname{Ker} f$ se décompose en : (x,y,z)=(z,-z,z)=z(1,-1,1). On en déduit que $\operatorname{Ker} f$ est la droite engendré par le vecteur (1,-1,1), d'équation $\begin{cases} x=z \\ y=-z \end{cases}$.

c. $\operatorname{Im} f = \{ f(\overrightarrow{u}) : \overrightarrow{u} \in \mathbb{R}^3 \}.$

Soit
$$\overrightarrow{u'}(x',y',z') \in \mathbb{R}^3$$
 un vecteur de $\mathrm{Im} f$. Alors il existe $(x,y,z) \in \mathbb{R}^3$ tel que $f(\overrightarrow{u}) = \overrightarrow{u'}$.
$$(x',y',z') \text{ vérifie le système } (S) : \begin{cases} -x+y+2z=x' \mid E_1 \\ x+2y+z=y' \mid E_2 \\ x+y \mid =z' \mid E_3 \end{cases}$$

$$S \iff \begin{cases} -x+y+2z=x' \\ 3y+3z=x'+y' \\ 2y+2z=x'+z' \end{cases} \begin{vmatrix} E_1 \\ E_2'=E_1+E_2 \\ E_3'=E_1+E_3 \end{cases} \iff \begin{cases} -x+y+2z=x' \\ 3y+3z=x'+y' \\ 0=x'+2y'+3z' \end{vmatrix} \begin{vmatrix} E_1 \\ E_2' \\ E_3''=-2E_2'+3E_3' \end{vmatrix}$$
Finalement, $(x',y',z') \in (S) \iff x'-2y'+3z'=0$. With this part of the first of the

Les coordonnées (x', y', z') de Imf vérifient $x' \neq 2y' - 3z'$

D'où : (x', y', z') = (2y' - 3z', y', z') = y'(2, 1, 0) + z'(-3, 0, 1).

On en déduit que Im f est le plan vectoriel engendré par les vecteurs $\{(2,1,0),(-3,0,1)\}$, d'équation x - 2y + 3z = 0

$$\overrightarrow{u} \in \ker f \iff f((1,\alpha,\beta)) = \overrightarrow{0} \iff \begin{cases} -1 + \alpha + 2\beta = 0 \\ 1 + 2\alpha + \beta = 0 \\ 1 + \alpha = 0 \end{cases} \iff \begin{cases} \alpha + 2\beta = 1 \\ 2\alpha + \beta = -1 \\ \alpha = -1 \end{cases}$$

En remplaçant α par -1 dans l'une des deux premières équations, on obtien

 $\overrightarrow{u} \in \operatorname{Ker} f \text{ si } \alpha = -1 \text{ et } \beta = 1.$

Exercice 2

1 L'équation (E) a pour discriminant $\Delta = (1+3i)^2 - 4(4+4i) = -24 - 10i$.

Cherchons un nombre complexe z = x + iy tel que $z^2 = -24 - 10i$.

 $x^2 - y^2 + 2ixy = -24 - 10i$. Par identification des parties réelles et des parties imaginaires, $x^2 - y^2 = -24$ et xy = -5.

D'autre part, comme $|z|^2 = |-24 - 10i|$ alors $x^2 + y^2 = 26$.

On obtient le système d'équations suivant : $\begin{cases} x^2 - y^2 = -24 & (1) \\ x^2 + y^2 = 26 & (2) \\ xy = -5 & (3) \end{cases}$

En additionnant membre à membre l'équation (1) et (2) on obtient, $x^2 = 1$. On en déduit que x = -1 ou x = 1;

En multipliant l'équation (1) par -1, puis en ajoutant membre à membre la nouvelle équation obtenue et l'équation (2), on obtient $y^2 \Rightarrow 25$. On en déduit que y = -5 ou y = 5;

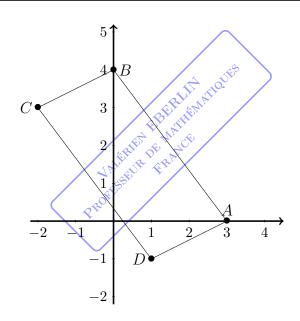
L'équation (3) nous indique que x et y sont de signes contraires.

D'où $\Delta = (-1 + 5i)^2$.

Les solutions de l'équation (E) sont Z_1 $\underbrace{Z_1 = \underbrace{1+3i-1+5i}_{2}}_{2} = 4i$ et $Z_2 = \underbrace{1+3i+1-5i}_{2} = 1-i$.

2

a.



- **b.** $Z_{\overrightarrow{AB}} = Z_B Z_A = -3 + 4i$; $Z_{\overrightarrow{DC}} = Z_C Z_D = -3 + 4i$; $Z_{\overrightarrow{CB}} = Z_B Z_C = 2 + i$; $Z_{\overrightarrow{DA}} = Z_A Z_D = 2 + i$.
- c. Comme $Z_{\overrightarrow{AB}}=Z_{\overrightarrow{DC}},$ alors le quadrilatère ABCD est un parallélogramme.

Problème

Partie A

 $1 \quad a + \frac{b}{1+t} = \frac{at+a+b}{1+t}. \text{ On cherche } a \text{ tel que } \frac{1-t}{1+t} = \frac{a+b+at}{1+t}.$

Par identification, a + b = 1 et a = -1

D'où a = -1 et b = 2.

Partie B

- 1 La fonction $x \mapsto -x + \ln(x+1)^2$ existe si et seulement si $x+1 \neq 0$. Donc $E_f = \mathbb{R} \setminus \{-1\}$.
- 2 La fonction f est dérivable sur E_f et onca : $\forall x \in E_f$, $f'(x) = -1 + \frac{2(x+1)}{(x+1)^2} = \frac{-x+1}{x+1}$. Tableau de signes

x	$-\infty$	-1	1	$+\infty$
-x+1	+		+ 0 111 1112 -	
x+1	_	0	+ 13 13 13 13 13 13 13 13 13 13 13 13 13	
$\frac{-x+1}{x+1}$	_		+ Hill Till Till Duck	

f'(x) < 0 pour tout $x \in]-\infty; -1[$ et f' est strictement décroissante sur $]-\infty; -1[$.

f'(x) > 0 pour tout $x \in]-1;1[$ et f est strictement croissante sur]-1;1[.

f'(x) < 0 pour tout $x \in]1; +\infty[$ et f est strictement décroissante sur $]1; +\infty[$.

3 Tableau de variation

$$\lim_{x \to -\infty} f(x) = +\infty \; ; \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x \left(1 - 2\frac{\ln(1+x)}{x}\right) = -\infty \; ;$$

$$\lim_{x \to -1_{-}} f(x) = -\infty \; ; \quad \lim_{x \to -1_{+}} f(x) = -\infty.$$

x	$-\infty$ –	1	1	α	$+\infty$
f'(x)	_	+	0	-	
f(x)	$+\infty$ $-\infty$	$-\infty$	$-1 + \ln 4$	0	× -8

4 $f(2) \approx 0.197$; $f(3) \approx -0.227$.

La fonction f est continue, strictement décroissante sur [2;3[.

De plus, $f(2) \times f(3) < 0$.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in]2;3[$ tel que $f(\alpha) = 0.$

5
$$f(-2) = 2$$
; $f'(-2) = -3$.

$$f(-\frac{3}{2}) \approx 0, 11$$
; $f'(-\frac{3}{2}) = -5$.

f(0) = 0; f'(0) = 1.

 $f(5) \approx -1, 4$; $f'(5) \approx -0, 67$.

$$(5) \approx -1, 4; \ f'(5) \approx -0, 67.$$

$$\bullet \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(-1 + 2 \frac{\ln|x+1|}{x} \right) = 1.$$

$$\lim_{x \to \infty} \left[f(x) - (-x) \right] = \lim_{x \to \infty} \ln(x + 1)^{2} = +\infty.$$

 $\lim_{x \to -\infty} \left[f(x) - (-x) \right] = \lim_{x \to -\infty} \ln(x+1)^2 = +\infty.$

Comme $\lim_{x\to -\infty} \frac{f(x)}{x} = -1$ et $\lim_{x\to -\infty} \left[f(x) - (-x) \right] = +\infty$, alors la courbe ($\mathscr C$) admet une direction asymptotique (branche parabolique) de direction, la droite d'équation $y = -x \text{ en } -\infty.$

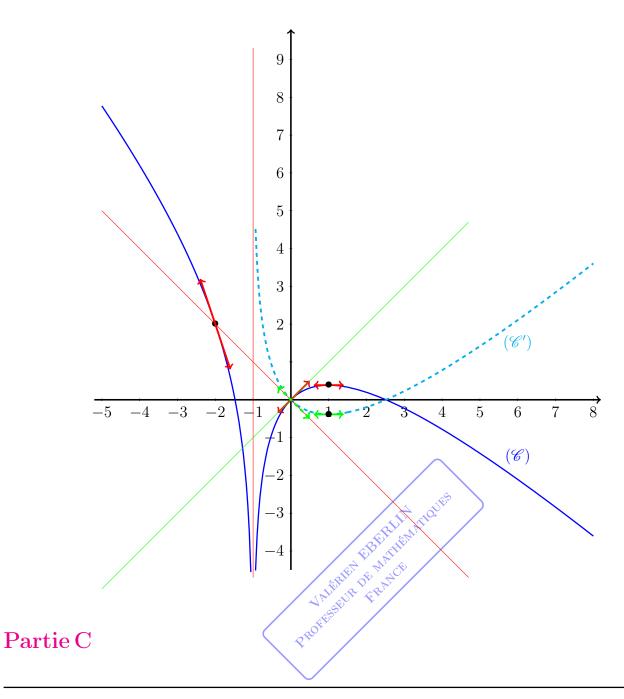
- On obtient de même : $\lim_{x\to +\infty} \frac{f(x)}{x} = -1$ et $\lim_{x\to +\infty} \left[f(x) (-x)\right] = +\infty$ et on en déduit que la courbe ($\mathscr C$) admet une direction asymptotique de direction, la droite d'équation y = -x en $+\infty$.
- $\lim_{x\to -1_-} f(x) = -\infty$; $\lim_{x\to -1_+} f(x) = -\infty$. la courbe (%) admet une asymptote verticale d'équation x=-1.
- **7** Équation de la tangente en x = -2

Équation de la tangente en x = -2L'équation de la tangente à (\mathscr{C}) en x = -2 est donnée par la formule :

$$y = f'(-2)(x+2) + f(-2)$$
. D'où $y = 3x - 4$.

Équation de la tangente en x = 0

L'équation de la tangente à (\mathscr{C}) en x=0 est donnée par la formule : y=f'(0)(x-0)+f(0). D'où y = x.



1 Tableau de variation de h

x	-1 1 $1 + \infty$
h'(x)	
h(x)	$+\infty +\infty$ $1 - \ln 4$ $+\infty$

2 Voir graphique.

