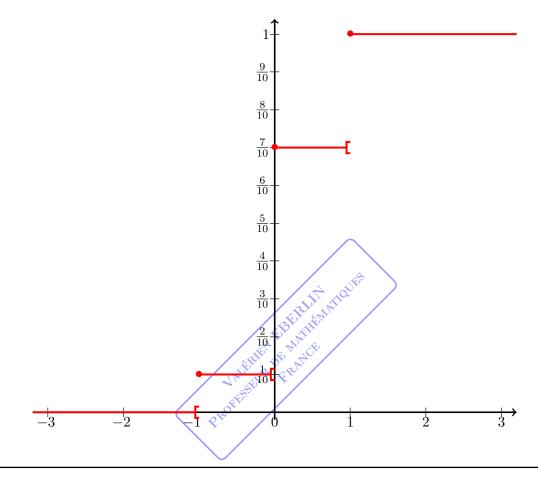
Correction bac 2010 Série D


Exercice

Cor	rection l	oac 2010	- Séri
		Dac 2010 Oac 20	ARTICAL TO SERVICE AND ADDRESS OF THE PROPERTY
X	-1	0	1
p	$\frac{C_2^2.C_3^0}{C_5^2} = \frac{1}{10}$	$\frac{C_2^1 \cdot C_3^1}{C_5^2} = \frac{6}{10}$	$\frac{C_2^0.C_3^2}{C_5^2} = \frac{3}{10}$

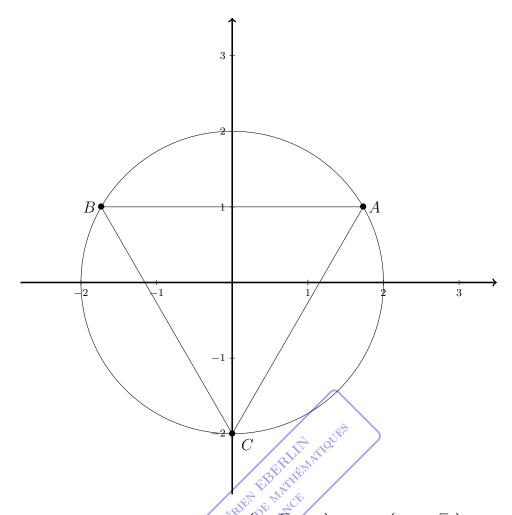
 ${\bf a.}$ La fonction de répartition de la variable aléatoire X est donnée par le tableau :

X	$]-\infty;-1[$	[-1;0[[0; 1[$[1; +\infty[$
$F_X(x)$	0	$\frac{1}{10}$	$\frac{7}{10}$	1

b.

Exercice 2

1 On peut prendre pour polynôme de degré 3, le polynôme : $(z-z_1)(z-z_2)(z-z_3)$


En remarquant que
$$\overline{z_2} = -z_1$$
, on a : $(z - z_1)(z - z_2)(z - z_3) = (z - z_1)(z + \overline{z_1})(z - z_3)$ $= (z^2 + (\overline{z_1} - z_1)z - |z_1|^2)(z - z_3)$ $= (z^2 - 2iz - 4)(z - z_3)$ $= z^3 + (-z_3 - 2i)z^2 + (2iz_3 - 4)z + 4z_3$ $= z^3 - 8i$

2 $\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})\right)$.

$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})\right).$$

$$-\sqrt{3} + i = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos(\frac{5\pi}{6}) + i\sin(\frac{5\pi}{6})\right).$$

$$-2i = 2 \times (-i) = 2(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})).$$

b.
$$(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) [2\pi] \equiv \arg\left(\frac{-\sqrt{3} - 3i}{-2\sqrt{3}}\right) \equiv \arg\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) [2\pi] \equiv \frac{\pi}{3} [2\pi]$$

$$(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \arg\left(\frac{z_B - z_C}{z_A - z_C}\right) [2\pi] \equiv \arg\left(\frac{-\sqrt{3} + 3i}{\sqrt{3} + 3i}\right) \equiv \arg\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) [2\pi] \equiv \frac{\pi}{3} [2\pi]$$

La somme des angles dans un triangle étant égale à 180°, on en déduit que l'angle $(\overrightarrow{BC},\overrightarrow{BA}) \equiv \frac{\pi}{3} \, [2\pi]$

 \mathbf{c} . Le triangle \overrightarrow{ABC} est équilatéral.

al.

PROFESSELER PERMETER ANGE

Problème

Partie A

1 La fonction g est dérivable sur $]-\infty;0[$ et on $a:g'(x)=\frac{2}{x}$. $\forall x \in]-\infty;0[, g'(x)<0.$ La fonction g est strictement décroissante sur $]-\infty;0[$.

x	$-\infty$ -1	0
g'(x)	_	
g(x)	+∞ 	∞

$$2 g(-1) = 2\ln(1) = 0.$$

Signes de g

 \overline{g} est strictement décroissante sur $]-\infty;0[$.

De plus, g(-1) = 0.

On en déduit que :

g(x) > 0 pour tout $x \in]-\infty;-1[$;

g(x) < 0 pour tout $x \in]-1;0[$.

D'où le tableau de variation :

Partie B

- La fonction $x : \mapsto -2x + 1 + 2x \ln |x|$ existe pour tout $x \le 0$. La fonction $x : \mapsto (x+2) e^{-x} - 1$ existe pour tout $x \ge 0$. Donc l'ensemble de définition de f est \mathbb{R} .
- 2 a. Continuité en 0 $\lim_{x \to 0_{-}} f(x) = \lim_{x \to 0_{-}} (-2x + 1 + 2x \ln |x|) = 1.$ $\lim_{x \to 0_{+}} f(x) = \lim_{x \to 0_{+}} ((x + 2) e^{-x} 1) = f(0).$ Comme $\lim_{x \to 0_{-}} f(x) = \lim_{x \to 0_{+}} f(x) = f(0), \text{ alors la fonction } f \text{ est continue en } 0.$

Dérivabilité en 0

$$\lim_{x \to 0_{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{-}} (-2 + 2 \ln|x|) = -\infty,$$

$$\lim_{x \to 0_{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{-}} (-2 + 2 \ln|x|) = -\infty.$$

$$\lim_{x \to 0_{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{+}} e^{-x} + 2 \lim_{x \to 0_{+}} \frac{e^{-x} - 1}{x} = 1.$$

Comme $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x}$ n'est pas une valeur finie, on en déduit que f n'est pas dérivable en 0.

b. |x| = -x si x < 0.

|x| = -x si x < 0.La fonction f s'écrit $f(x) = -2x + 1 + 2x \ln(-x)$ si x < 0.

D'où :
$$\forall x \in]-\infty; 0[, \quad f'(x) = -2 + 2 \times \ln(-x) + 2x \times \frac{-1}{-x} = 2\ln(-x) = g(x).$$

3

$$f$$
 est dérivable sur $]-\infty;0[\cup]0;+\infty[$ et on a : $f'(x)=\begin{cases}g(x) & \text{si } x<0\\-(x+1)\,\mathrm{e}^{-x} & \text{si } x>0\end{cases}$

On en déduit que :

- pour tout $x \in]-\infty;-1[, f'(x)>0 \text{ et } f \text{ est strictement croissante sur }]-\infty;-1[;$
- pour tout $x \in]-1;0[, f'(x) < 0$ et f est strictement décroissante sur]-1;0[.
- pour tout x > 0, $f'(x) = -(x+1)e^{-x} < 0$ et f est strictement décroissante sur $]0;+\infty[.$

Tableau de variation

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} x \ln|x| \left(\frac{-2}{\ln|x|} + \frac{1}{x \ln|x|} + 2\right) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[(x+2) e^{-x} - 1 \right] = -1.$$

x	$-\infty$	β	-1	ı	0	α	$+\infty$
f'(x)		+	0	_		+	
f(x)	$-\infty$	_0_	3 —		1	0	-1

4 Montrons qu'il existe α vérifiant $1 < \alpha < \frac{3}{3}$, solution de l'équation f(x) = 0

$$f(1) \approx 0, 10 \text{ et } f(\frac{3}{2}) \approx -0, 22.$$

La fonction f est continue, strictement décroissante sur $1; \frac{3}{2}$ [.

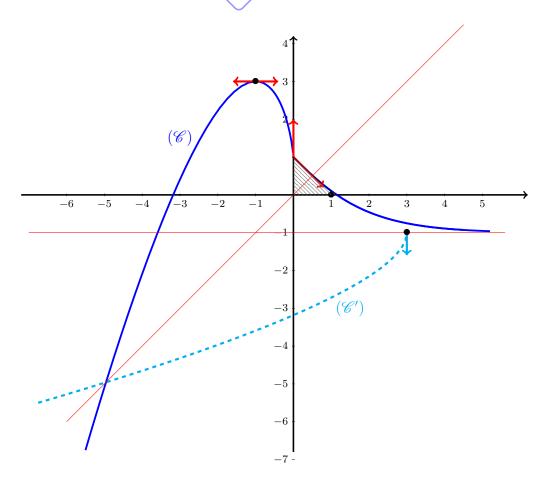
De plus, $f(1) \times f\left(\frac{3}{2}\right) < 0$.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in \left[1; \frac{3}{2}\right[$ tel que $f(\alpha) = 0.$

Montrons qu'il existe β vérifiant $-4 < \beta < -3$, solution de l'équation f(x) = 0

 $f(-4) \approx -2,09 \text{ et } f(-3) \approx 0,41.$

La fonction f est continue, strictement croissante sur (-4; -3).


De plus, $f(-4) \times f(-3) < 0$.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\beta \in \left]-4;-3\right[$ tel que $f(\beta) = 0$.

 $\lim_{x\to -\infty} \frac{f(x)}{x} = \lim_{x\to -\infty} \left(-2 + \frac{1}{x} + 2\ln|x|\right)$ La courbe ($\mathscr C$) admet une direction asymptotique de direction (Oy) en $-\infty$.

 $\lim_{x\to +\infty} f(x) = -1$. La courbe (\mathscr{C}) admet une asymptote horizontale d'équation y=-1.

6

a. $\mathscr{A}(\alpha) = \int_0^\alpha \left[f(x) - 0 \right] dx = \int_0^\alpha \left[(x+2) e^{-x} - 1 \right] dx = -\alpha + \int_0^\alpha (x+2) e^{-x} dx.$

Intégrons
$$\int_0^{\alpha} (x+2) e^{-x} dx$$
.

 $\frac{\text{Intégrons} \int_0^\alpha (x+2) \, \mathrm{e}^{-x} \, dx}{\text{Si l'on choisit } \begin{cases} u(x) = x+2 \\ v'(x) = \mathrm{e}^{-x} \end{cases}} \text{ alors on peut prendre } \begin{cases} u'(x) = 1 \\ v(x) = -\mathrm{e}^{-x} \end{cases}$

Il vient, en intégrant par parties :

D'où
$$\mathscr{A}(\alpha) = \left[-(\alpha+3)e^{-\alpha} \right] \alpha + 3 \cos^2 \alpha$$

D'où
$$\mathscr{A}(\alpha) = \left[-(\alpha + 3) e^{-\alpha} - \alpha + 3 \right] \text{cm}^2$$
.

b.
$$\lim_{\alpha \to 0} \mathscr{A}(\alpha) = \lim_{\alpha \to 0} [-(\alpha + 3) e^{-\alpha} - \alpha + 3] = 0.$$

Partie C

- Partie C $1 \ h \ \text{est une fonction continue, strictement croissante sur }]-\infty;-1].$ Donc h réalise une bijection de $]-\infty;-1]$ sur $[\lim_{x\to\infty}h(x);h(-1)]=]-\infty;3].$ J est l'intervalle $]-\infty;3].$
- 2 Comme h et h^{-1} ont le même sens de variation, on en déduit le tableau de variation de h^{-1} .

x	$-\infty$	3
$\left(h^{-1}\right)'(x)$	+	
$h^{-1}(x)$	$-\infty$	-1

