Sujet bac 2020 - Série D

ET LIBERALITATION OF THE PROPERTY OF THE PROPE

Exercice 1

5 points

- Trouver dans l'ensemble $\mathbb C$ des nombres complexes les nombres $z_1,\ z_2$ et z_3 tels que : $\begin{cases} z_1+z_2=-3+i\\ i\overline{z}_2=1-2i\\ z_2\times z_3=-1-2i \end{cases}$
- 2 On considère le polynôme complexe P tel que : $P(z) = z^3 + (3-2i)z^2 + (1-4i)z 1 2i$.
 - **a.** Vérifier que z = i est une racine de P(z).
 - **b.** Trouver le nombre complexe z_0 tel que : $P(z) = (z i)(z z_0)(z + 2 i)$.
 - c. Donner l'ensemble des solutions de l'équation P(z) = 0.
- Dans le plan complexe, on désigne par A, B et C les points d'affixes respectifs $z_A = -1$; $z_B = -2 + i$ et $z_C = i$.
 - a. Donner l'écriture complexe de la rotation R de centre A et qui transforme B en C.
 - **b.** En déduire l'angle de la rotation R.

Exercice 2

5 points

Soit $\mathscr{B} = (\vec{i}, \vec{j})$ la base canonique de \mathbb{R}^2 .

On considère les vecteurs $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$ et $\overrightarrow{v} = -\overrightarrow{i} + 2\overrightarrow{j}$.

- **a.** Prouver que la famille $\mathscr{B}' = (\overrightarrow{u}, \overrightarrow{v})$ est une base de \mathbb{R}^2 .
 - **b.** Écrire les vecteurs \vec{i} et \vec{j} dans la base \mathscr{B}' .
- 2 On considère l'endomorphisme f de \mathbb{R}^2 défini par :

$$\begin{cases} f(\overrightarrow{u}) = \overrightarrow{u} \\ f(\overrightarrow{v}) = -\overrightarrow{v} \end{cases}$$

- **a.** Calculer $f(\vec{i})$ et $f(\vec{j})$ en fonction de \vec{i} et \vec{j} .
- **b.** Montrer que $f \circ f(\vec{i}) = \vec{i}$ et $f \circ f(\vec{j}) = \vec{j}$.
- **c.** En déduire la nature de f.
- **d.** Donner alors la base \mathscr{E} et la direction \mathscr{D} de f.

Exercice 3

7 points

Partie A

Soit h la fonction dérivable sur \mathbb{R} et définie par $h(x) = (1-x)e^{2-x} + 1$.

- **1** a. Pour tout réel x de \mathbb{R} , calculer h'(x).
 - **b.** En déduire le signe de h'(x) sur \mathbb{R} .

c. On admet que $\lim_{x\to +\infty} h(x) = 1$ et $\lim_{x\to -\infty} h(x) = +\infty$.

Dresser le tableau de variation de h sur \mathbb{R} .

2 En utilisant les questions précédentes, déduire le signe de h(x) sur \mathbb{R} .

Partie B

On considère la fonction f définie sur \mathbb{R} par $f(x) = x(1 + e^{2-x})$.

On note (\mathscr{C}) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité graphique : 1 cm).

- 1 Calculer $\lim_{x \to +\infty} f(x)$.
- **2** a. Montrer que pour tout x élément de \mathbb{R} , f'(x) = h(x).
 - **b.** Dresser le tableau de variation de f sur \mathbb{R} sachant que $\lim_{x\to -\infty} f(x) = -\infty$.
- **3** a. Montrer que f admet une bijection réciproque notée f^{-1} définie sur \mathbb{R} .
 - **b.** Dresser le tableau de variation de f^{-1} .
- **a.** Préciser la nature de la branche infinie de f au voisinage de $-\infty$.
 - **b.** Montrer que la droite (Δ) d'équation y = x est asymptote à (\mathscr{C}) au voisinage de $+\infty$.
 - **c.** Étudier la position de (\mathscr{C}) par rapport à (Δ) .
- Construire (Δ) , les courbes (\mathscr{C}) et (\mathscr{C}') où (\mathscr{C}') représente la courbe de f^{-1} dans le repère (O, \vec{i}, \vec{j}) .

Exercice 4 3 points

Une entreprise fabrique des pièces pour un client. Le contrat stipule que le produit fabriqué doit être soumis à deux tests distincts de normes de qualité A et B.

La pièce est acceptée s'il a satisfait à ces deux tests qui sont indépendants l'un de l'autre.

On note:

A l'événement « le produit est conforme à la norme de qualité A ».

Et B l'événement « le produit est conforme à la norme de qualité B ».

Une étude a démontré que la probabilité de l'événement A est P(A) = 0, 9 et celle de l'événement B est P(B) = 0, 95.

- Calculer $P(A \cap B)$ avec $A \cap B$ l'événement « le produit est conforme à la norme A et à la norme B ».
- Soit C l'événement « le produit n'est pas accepté par le client ; donc il est déclaré non conforme ».

Montrer que P(C) = 0,145.

On suppose que le stock du client étant trop bas, il accepte de prendre le produit s'il satisfait soit au test A ou au test B, donc il appartient à $A \cup B$.

Calculer $P(A \cup B)$.