Série D Sujet bac 2019 -

Exercice

5 points

 \blacksquare On considère, dans l'ensemble $\mathbb C$ des nombres complexes, l'équation :

$$(E): \mathbb{Z}^{2} - 4Z + 8 = 0$$

a. Résoudre l'équation (E).

b. Écrire la solution dont la partie imaginaire est négative sous la forme trigonométrique.

2 Dans le plan muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A et B d'affixes respectives 2-2i et 2+2i.

a. Écrire sous forme algébrique, le complexe $U = \frac{Z_B}{Z_A}$

b. En déduire la nature du triangle OAB.

3 On considère l'application f du plan \mathcal{P} dans lui-même qui à tout point M d'affixe Z associe le point M' d'affixe Z' tel que $Z' = e^{i\frac{\pi}{3}}Z$

a. Préciser la nature de f.

b. Écrire sous forme trigonométrique, puis sous forme algébrique, l'affixe $Z_{A'}$ du point A' tel que A' = f(A).

c. En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 2

5 points

L'espace vectoriel \mathscr{E} est rapporté à sa base canonique $\mathscr{B}(\vec{i},\vec{j})$.

Soit f l'endomorphisme de $\mathscr E$ défini par son expression analytique : quelque soit le vecteur $\overrightarrow{u}(x,y)$ de \mathscr{E} , l'image de \overrightarrow{u} par f est le vecteur $\overrightarrow{u'}(x',y')$ tel que : $\begin{cases} x' = 2x + 3y \\ y' = -x - 2y \end{cases}$

1 Déterminer $f(\vec{i})$ et $f(\vec{j})$.

2 En déduire la matrice de f dans la base (\vec{i}, \vec{j}) .

Donner son image \overrightarrow{V}' par l'endomorphisme for the little de l'endomorphisme for the l'endomorphisme for the little de l'endomorphisme for the l'endo 3 Soit $\overrightarrow{V}(3;-4)$ un vecteur de \mathscr{E} .

Montrer que f est un endomorphisme bijectif.

a. Calculer $f \circ f(\vec{i})$ et $f \circ f(\vec{j})$.

b. En déduire la nature de f.

c. Déterminer alors la base et la direction de f.

Exercice 3

7 points

Partie I

Partie I Soit g la fonction numérique de la variable réelle x définie sur \mathbb{R}_+^* par $g(x) = \frac{1}{x}$ et (\mathcal{C}') sa courbe représentative dans le plan muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) , d'unité graphique : 2 cm.

- 1 Calculer la dérivée g'(x) et donner son signe sur \mathbb{R}_+^* .
- 2 Sachant que $\lim_{x\to 0^+} g(x) = +\infty$ et $\lim_{x\to +\infty} g(x) = 0$, dresser le tableau de variation de g.

Partie II

Dans le même repère défini dans la partie I, on considère la courbe (\mathscr{C}) représentative de la fonction f définie sur $]0; +\infty[$ par $: f(x) = \frac{\ln x}{x} + \frac{1}{x}$

- **a.** Résoudre dans \mathbb{R}_+^* l'équation f(x) = g(x).
 - **b.** En déduire la position relative des courbes (\mathscr{C}) et (\mathscr{C}') .
- **a.** Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
 - **b.** Montrer que $f'(x) = \frac{-\ln x}{x^2}$ sur \mathbb{R}_+^* et étudier son signe pour tout $x \in \mathbb{R}_+^*$.
 - **c.** Etablir le tableau de variation de f.
- 3 En remarquant que les axes de coordonnées sont asymptotes aux courbes (\mathscr{C}) et (\mathscr{C}'), tracer soigneusement ces deux courbes dans le repère $(\vec{O}, \vec{i}, \vec{j})$ donné.

Partie III

On note h et k les fonctions définies sur \mathbb{R}_+^* par $h(x) = \frac{1}{2}(\ln x)^2$ et k(x) = f(x) - g(x).

- **1** Démontrer que h est une primitive de k sur \mathbb{R}_+^* .
- 2 Calculer en cm², l'aire A de la portion du plan comprise entre les courbes (\mathscr{C}) et (\mathscr{C}') et les droites d'équations x = 1 et x = e.

Exercice 4

3 points

Soit X une variable aléatoire dont la loi de probabilité est donnée par le tableau suivant :

x_i	0	1 Library	3
$p\left(X=x_i\right)$	$\frac{1}{8}$	13 11 12 13 8 8 8 8 8	b

1 Calculer l'espérance mathématique de X en fonction de a et b.

- PROFESSEUR DE RANGE MANUEL DES a. Déterminer les réels a et b tels que : $E(X) = \frac{3}{2}$. 2
 - ${f b}$. Calculer la variance de X et l'écart-type
- 3 Donner la fonction de répartition de X

PROFESSEUR DE RANGE AND SEED OF SEED O