Sujet bac 2018 - Série D

Exercice

5 points

ARTER DE BARRIERA LICE MONTH DE LA CONTROL D Le plan complexe \mathbb{C} étant rapporté au repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On considère les points A, B, C et D d'affixes respectives

$$Z_A = 1 + 2i$$
 ; $Z_B = -1 + 2i$; $Z_C = 1 - i$; $Z_D = 1$

- a. Déterminer l'affixe $Z_{\overrightarrow{BC}}$ du vecteur \overrightarrow{BC} .
 - **b.** Déterminer l'expression analytique de la translation de vecteur \overrightarrow{BC} .
 - c. Trouver l'affixe du point A' image du point A par la translation de vecteur \overline{BC} .
- a. Prouver qu'une mesure, en radian, de l'angle $(\overrightarrow{AD}, \overrightarrow{AB})$ est $-\frac{\pi}{2}$. 2
 - **b.** Écrire l'expression analytique de la rotation R de centre A et d'angle (AD, AB).
 - c. Trouver l'affixe du point C' image du point C par la rotation R.
- 3 Déterminer le rapport et l'angle de la similitude plane directe S de centre A et qui transforme B en A.

Exercice

5 points

Soit \mathscr{E} un plan vectoriel rapporté à sa base canonique (\vec{i}, \vec{j}) .

On considère les deux droites vectorielles (\mathcal{D}_1) et (\mathcal{D}_2) d'équations cartésiennes respectives x - 2y = 0 et x + y = 0 de ce plan.

- 1 Vérifier que les droites (\mathcal{D}_1) et (\mathcal{D}_2) sont engendrées respectivement par les vecteurs $\overrightarrow{e_1} = 2\overrightarrow{i} + \overrightarrow{j} \text{ et } \overrightarrow{e_2} = -\overrightarrow{i} + \overrightarrow{j}.$
- **2** Prouver que la famille $(\overrightarrow{e_1}, \overrightarrow{e_2})$ est une base de \mathscr{E} .
- 3 Montrer que les sous-espaces vectoriels (\mathcal{D}_1) et (\mathcal{D}_2) sont supplémentaires dans \mathscr{E} .
- 4 Soit f un endomorphisme de \mathscr{E} défini par : $f(\overrightarrow{e_1}) = \overrightarrow{e_1}$ et $f(\overrightarrow{e_2}) = -\overrightarrow{e_2}$. Exprimer les vecteurs $f(\vec{i})$ et $f(\vec{j})$ dans la base (\vec{i}, \vec{j}) .

Exercice

6 points

Soit la fonction numérique f à variable réelle x, définie par :

$$f(x) = \begin{cases} \frac{\ln x}{-1 + \ln x} & \text{si } x > 0\\ e^{-2x} & \text{si } x \leqslant 0 \end{cases}$$

On désigne par (\mathscr{C}) la courbe représentative de f dans le repère orthonormé (O,\vec{i},\vec{j}) d'unité graphique: 2 cm.

1 Déterminer l'ensemble de définition de f_{\star}

- 2 Vérifier que la fonction f est continue en x = 0.
- 3 Étudier la dérivabilité de f en x = 0.

- a. Préciser les branches infinies à la courbe ($\mathscr C$) de f.

 b. Tracer ($\mathscr C$).

 alculer l'aire $\mathscr A$ du domainitées d? 6 Calculer l'aire \mathscr{A} du domaine limité par la courbe (\mathscr{C}) de f, l'axe des abscisses et les droites d'équations x = -1; x = 0.

Exercice

4 points

Le tableau ci-dessous représente le couple (x, y) des deux caractères d'une série statistique. x est le nombre de jours et y le poids en mg d'une larve.

x	1	2	3	4	5	6
y	0,2	1,4	1,8	2	2,6	3

- 1 Calculer les coordonnées \overline{x} et \overline{y} du point moyen G.
- 2 Déterminer l'équation de la droite de régression linéaire de y en x.
- 3 Estimer le poids de la larve au 7ème jour.

