Sujet bac 2017 - Série D

On considère le polynôme P défini par $P(Z) = Z^3 + Z^2 - 2$.

- a. Montrer que 1 est une racine de P(Z).
 - **b.** Vérifier que P(Z) peut s'écrire sous la forme : $P(Z) = (Z-1)(Z^2+2Z+2)$.
 - c. Résoudre dans \mathbb{C} l'équation P(Z)=0
- 2 On considère les points A, B et C d'affixes respectives :

$$Z_A = 1$$
; $Z_B = -1 + i$; $Z_C = -1 - i$

- **a.** Construire le triangle ABC.
- **b.** Déterminer l'affixe Z_D du point D telle que ABCD soit un parallélogramme.
- 3 Soit R la rotation de centre A et d'angle de mesure $\frac{\pi}{2}$
 - a. Montrer que l'expression complexe de R est telle que :

$$Z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)Z + \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

b. Soit M et M' les points d'affixes respectives Z = x + iy et Z' = x' + iy'. Exprimer les coordonnées x' et y' du point M' en fonction de x et y.

Exercice 2

5 points

Soit (\vec{i}, \vec{j}) une base du plan vectoriel \mathscr{E}, f désigne l'endomorphisme de \mathscr{E} tel que :

$$\begin{cases} 5f(\vec{i}) = a\,\vec{i} + 4\,\vec{j} \\ f(\vec{j}) = \frac{4}{5}\,\vec{i} - \frac{3}{5}\,\vec{j} \end{cases} \tag{1}$$

- 1 Déterminer la matrice de f dans la base (i, j).
- 2 Déterminer l'expression analytique de f.
- 3 Déterminer le réel a pour que f soit une symétrie vectorielle.
- 4 On pose a=3.
 - a. Déterminer les élements caractéristiques de f (base et direction).
 - **b.** Déterminer un vecteur directeur (\overrightarrow{e}) de la base.
 - c. Déterminer un vecteur directeur (e_2) de la direction.
 - **d.** Soit $\overrightarrow{e_1} = 2\overrightarrow{i} + \overrightarrow{j}$ et $\overrightarrow{e_2} = -\overrightarrow{i} + 2\overrightarrow{j}$ deux vecteurs. Démontrer que $(\overrightarrow{e_1}, \overrightarrow{e_2})$ est une base de \mathbb{R}^2 .
 - e. Donner la matrice de f relativement à la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$.

Exercice 3

7 points

Partie A

On considère la fonction g définie sur]0; $+\infty[$ par $g(x) = -\frac{1}{x} + \frac{1}{x}$ Calculer les limites de g en 0^+ of x

- **a.** Calculer la dérivée g' de g sur $[0; +\infty]$.
 - **b.** Dresser le tableau de variation de q.
- a. Montrer que l'équation g(x) = 0 admet une solution unique $\alpha \in \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}$
 - **b.** En déduire le signe de g(x) sur $]0,+\infty[$

Partie B

On considère la fonction f définie sur $]0, +\infty[$ par :

$$f(x) = x - (x - 1)\ln(x).$$

On désigne par (\mathscr{C}) sa courbe représentative dans le plan muni d'un repère orthonormé (O, i, j).

- 1 Calculer les limites de f en 0^+ et en $+\infty$.
- a. Montrer que la dérivée f' de f est f'(x) = -g(x).
 - **b.** Dresser le tableau de variation de f. On prendra $\alpha = 1, 7$ et $f(\alpha) = 1, 3$.
- 3 On admet que l'équation f(x) = 0, admet deux solutions x_0 et x_1 avec $x_0 \in \left] \frac{1}{2} ; 1 \right[$ et $x_1 \in \left[\frac{7}{2} ; 4 \right[.$
 - **a.** Étudier la branche infinie à (\mathscr{C}) . Remplacer la question par : « Étudier les branches infinies à (\mathscr{C}) . »
 - **b.** Tracer la courbe (\mathscr{C}) .
- 4 Tracer la courbe (\mathscr{C}') de la fonction h définie par h(x) = -f(x) dans le même repère que $(\mathscr{C}).$

Exercice

3 points

On rappelle que la fonction de répartition d'une variable aléatoire X est donnée par le tableau :

X	$]-\infty;x_1[$	$[x_1; x_2[$	$[x_2; x_3[$	$[x_n; +\infty[$
F(X)	0	P_1	$P_1 + P_2$	$P_1 + P_2 + \dots + P_n$

où P_i est la probabilité associée à la valeur x_i .

Soit la fonction de répartition F d'une variable aléatoire X, définie par le tableau ci-après :

X	$\big]-\infty;2\big[$	[2;3[[3;4[[4;5] [5;6[$igl[6;.+\inftyigl[$
F(X)	0	$\frac{1}{6}$	$\frac{5}{24}$	$\frac{7}{24}$ the $\frac{1}{3}$	1

- exactes prises par X.

 Labelir la loi de probabilité de X.

 Calculer l'espérance mathématique E(X).

