Sujet bac 2016 - Série D

FREE MARTINATION

Exercice 1

5 points

Dans le plan complexe $\mathbb C$ muni d'un repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère l'application S définie par :

- $z' \stackrel{\text{\tiny def}}{\rightleftharpoons} (1+i)z$
- 1 Déterminer la nature, le rapport et l'angle de l'application S.
- Soit le point A d'affixe $z_A = 2i$. Déterminer les affixes des points B et C définis par S(A) = B et S(B) = C.
- 3 Placer les points A, B, et C dans un repère du plan.
- 4 Soit le point I milieu du segment [OC]. Montrer que le triangle ABI est rectangle et isocèle en B.
- **5** Écrire une équation de troisième degré dont les affixes z_A , z_B et z_C définies ci-dessus sont solutions.

Exercice 2

5 points

L'espace vectoriel \mathbb{R}^2 est rapporté à sa base canonique $\mathscr{B}=(\vec{i},\vec{j})$. Soit f l'endomorphisme de \mathbb{R}^2 défini dans la base (\vec{i},\vec{j}) par :

$$f(\vec{j}) = 3\vec{i} - 2\vec{j}$$
 et $f \circ f(\vec{j}) = \vec{j}$

- 1 Calculer $f(\vec{i})$ et $f \circ f(\vec{i})$.
- **2** En déduire la nature de l'application f.
- **a.** Qu'est ce qu'un automorphisme?
 - **b.** Prouver que f est un automorphisme involutif.
 - c. Caractériser l'application f.
- 4 Soit les vecteurs $\overrightarrow{u} = 2\overrightarrow{i} \overrightarrow{j}$ et $\overrightarrow{v} = -3\overrightarrow{i} + \overrightarrow{j}$.
 - **a.** Montrer que $\mathscr{B}' = (\overrightarrow{u}, \overrightarrow{v})$ est une base de \mathbb{R}^2 .
 - **b.** Écrire la matrice de f dans la base \mathscr{B}' .

Exercice 3

7 points

Dans le plan rapporté à un repère orthonormal (O, \vec{i}, \vec{j}) d'unité graphique 1 cm, on considère la fonction f de la variable réelle x définie sur \mathbb{R}_+^* par $f(x) = \frac{e^x}{e^x - 1}$. On note (\mathscr{C}) , la courbe de f dans le plan.

- 1 Calculer les limites de f en 0 à droite et en $+\infty$.
- 2 Déduire que la fonction f admet deux asymptotes que l'on précisera.

- a. Montrer que pour tout x appartenant à \mathbb{R}_+^* , on a f'(x) =3
 - **b.** Donner le sens de variation de f.
- Tracer la courbe (\mathscr{C}) ainsi que ses asymptotes. Soit g la fonction définie sur \mathbb{R}_+^* par $g(x) = \mathbb{R}_+^*$ Construire la courb Construire la courbe (\mathscr{C}') de g dans le même repère que (\mathscr{C}) .
- 6 Calculer l'aire \mathscr{A} de la portion du plan délimitée par les courbes (\mathscr{C}) et (\mathscr{C}'), et les droites d'équations x = 1 et x = 2.

Exercice

3 points

Soit le tableau statistique à double entrée :

X	0	1	2
-1	1	m	1
1	1	0	2
2	2	3	n

- 1 Déterminer les lois marginales de X et de Y en fonction de n et m.
- 2 Déterminer m et n sachant que le point moyen du nuage statistique est G(1;1).
- 3 On pose m = 1 et n = 1.
 - a. Déterminer l'équation de la droite de régression linéaire de Y en X sachant que la covariance de X et Y est égale à $-\frac{1}{12}$, la variance de X est $\frac{1}{2}$ et celle de Y est $\frac{1}{6}$.
 - **b.** Calculer le coefficient de corrélation linéaire entre X et Y.

