Sujet bac 2015 - Série D

Exercice 5 points

On considère l'ensemble \mathbb{C} des nombres complexes et on rappelle que $i^2=-1$.

- 1 Déterminer les racines carrées du nombres complexe $u = 6 + 6i\sqrt{3}$.
- 2 Soit l'équation (E) définie dans \mathbb{C} telle que :

(E):
$$4Z^3 - 6i\sqrt{3}Z^2 - (9 + 3i\sqrt{3})Z - 4 = 0$$

- a. Vérifier que $Z_0 = -\frac{1}{2}$ est solution de l'équation (E).
- **b.** Résoudre dans \mathbb{C} l'équation (E).
- 3 Le plan complexe \mathbb{C} est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On donne les trois points A, B, C d'affixes respectives $Z_A = -\frac{1}{2}$, $Z_B = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ et $Z_C = 1 + i\sqrt{3}$.
 - a. Déterminer l'écriture complexe de la similitude plane directe S qui transforme A en $B ext{ et } B ext{ en } C.$
 - **b.** Déterminer les éléments caractéristiques de la similitude S.

Exercice 2 5 points

Soit $\mathscr E$ le plan vectoriel rapporté à sa base canonique (\vec{i},\vec{j}) . On donne les vecteurs $\overrightarrow{e_1} = \vec{i} + \vec{j}$ et $\overrightarrow{e_2} = 2\,\vec{i} + 3\,\vec{j}$. On considère l'endomorphisme f de $\mathscr E$ telle que $f(\overrightarrow{e_1}) = \overrightarrow{e_1}$ et $f(\overrightarrow{e_2}) = \vec{0}$.

- 1 Vérifier que $(\overrightarrow{e_1}, \overrightarrow{e_2})$ est une base de \mathscr{E} .
- 2 Écrire la matrice de f dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$.
- Soit $\overrightarrow{u'} = x' \overrightarrow{i} + y' \overrightarrow{j}$ l'image de $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$ par l'endomorphisme f telle que $f(\overrightarrow{u}) = \overrightarrow{u'}$.
 - **a.** Montrer que $f(\vec{i}) = 3\vec{i} + 3\vec{j}$ et $f(\vec{j}) = -2\vec{i} 2\vec{j}$.
 - **b.** Exprimer les coordonnées x' et y' de $\overrightarrow{u'}$ en fonction des coordonnées x et y de \overrightarrow{u} .
 - **c.** Calculer $f \circ f(\overrightarrow{u})$.
 - **d.** En déduire la nature de f.
 - e. Déterminer les caractéristiques de f.

Exercice 3 6 points

On considère la fonction numérique f à variable réelle x, définie telle que

$$f(x) = \frac{1}{x \ln x}$$

(\mathscr{C}) désigne la courbe représentative de f dans le repère orthonormé (O, \vec{i}, \vec{j}) du plan.

- **1** Montrer que f est définie sur $]0; 1[\cup]1; +\infty[$.
- 2 Vérifier que la dérivée f' de f est $f'(x) = \frac{-1 \ln x}{(x \ln x)^2}$.
- 3 a. Étudier le signe de f'.
 - **b.** Dresser le tableau de variation de f.
 - c. Étudier les branches infinies à (%)
 - **d.** Tracer (\mathscr{C}) .
- **a.** Montrer que f peut encore s'écrire $f(x) = \frac{\frac{1}{x}}{\ln x}$
 - **b.** Calculer l'intégrale $I = \int_{e}^{3} f(x)dx$.
 - **c.** En déduire l'aire \mathscr{A} du domaine du plan limité par la courbe (\mathscr{C}) de f, l'axe (Ox) des abscisses et les droites d'équations x = e et x = 3. Unité graphique : 2 cm.

Exercice 4

4 points

On considère la série statistique (x_i,y_j,n_{ij}) représentée par le tableau à double entrée suivant :

X	-1	1
-1	2	1
0	3	2
2	1	1

- 1 Déterminer les deux séries marginales.
- 2 Déterminer les coordonnées \overline{X} et \overline{Y} du point moyen du nuage statistique.
- 3 Calculer l'inertie du nuage par rapport au point moyen G.
- 4 Calculer le coefficient de corrélation linéaire entre X et Y.

