Série D Sujet bac 2014 -

ELT LILEVILLE TO THE STATE OF T

Exercice

- 5 points
- 1 Qu'appelle t-on conjugué d'un nombre complexe
- a. Résoudre dans l'ensemble \mathbb{C} des nombres complexes, l'équation $(E): Z^3=1$. On donnera les résultats sous forme algébrique.
 - b. Justifier que les solutions sont deux à deux conjuguées. Modification: Il s'agit plutôt de montrer que les solutions non réelles sont conjuguées entre elles.
- 3 Montrer que $Z_1 = -1 i\sqrt{3}$ est solution de l'équation $(E'): Z^3 = 8$.
- 4 Soit z'_0 , z'_1 , z'_2 les solutions de (E') où z'_1 et z'_2 sont deux complexes conjugués.
 - a Utiliser les solutions de (E) pour déduire les solutions de l'équation (E').
 - **b** Montrer que $\frac{z_1'}{z_2'}$ est solution de (E).

Exercice

5 points

Soit f l'endomorphisme de \mathbb{R}^3 de base $(\vec{i}, \vec{j}, \vec{k})$ qui associe à tout élément (x, y, z) de \mathbb{R}^3 , l'élément (x', y', z') de \mathbb{R}^3 défini par :

$$\begin{cases} x' = y + z \\ y' = x + y + z \\ z' = x \end{cases}$$

- **1** Déterminer $f(\vec{i})$, $f(\vec{j})$, $f(\vec{k})$ dans la base $(\vec{i}, \vec{j}, \vec{k})$ de \mathbb{R}^3 .
- **2** Déduire la matrice de f dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- a. Quelles conditions faut-il remplir pour qu'un ensemble $\mathcal E$ soit un sous espace vectoriel
 - **b.** Montrer alors que l'ensemble $\mathcal{H} = \{(x,y,z) \in \mathbb{R}^3 \mid x-y+z=0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 4 Déterminer le noyau de f et en donner une base $(\overrightarrow{e_1})$.
- **5** Déterminer l'image de f, puis une base de $\mathscr{B} = (\overrightarrow{e_2}, \overrightarrow{e_3})$.

Déterminer l'image de f, puis une base de $\mathscr{B} = (\overrightarrow{e_2}, \overrightarrow{e_3})$.

Exercice 3 7 points

Dans un plan muni d'un repère orthonorme $(\overrightarrow{O}, \overrightarrow{Ol}, \overrightarrow{OJ})$, on considère la fonction g de la pariable réelle g, définie par : variable réelle x, définie par :

$$g(x) = \frac{e^x}{e^x + 1} - x$$

- 1 Préciser l'ensemble de définition de qu
- 2 Déterminer g'(x), la fonction dérivée de g puis en déduire son signe.
- 3 Dresser le tableau de variation de g.

 4 Démontrer que l'équation $\frac{e^x}{e^x+1} = x$ admet une solution unique $\alpha \in]-\infty; +\infty[$.
- Soit h la fonction définie par $h(x) = \frac{e^x}{e^x + 1}$ et (\mathcal{C}) sa courbe représentative dans le plan muni du repère orthonormé $(O, \overrightarrow{OI}, \overrightarrow{OJ})$. Unité graphique 2 cm.
 - a. Montrer que pour tout x élément de \mathbb{R} , h'(x) > 0
 - **b.** Dresser le tableau de variation de *h*.
 - **c.** En déduire que pour tout $x \in \mathbb{R}$, $0 \le h(x) \le 1$.
- 6 On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = h(u_n) \end{cases}$$

- a. Démontrer en utilisant le raisonnement par récurrence que (u_n) est majorée par 1.
- **b.** Démontrer en utilisant le raisonnement par récurrence que (u_n) est croissante.
- **c.** En déduire la convergence de (u_n) , puis montrer que $\lim_{n\to+\infty}u_n=\alpha$

Exercice 3 points

On considère la série statistique (x, y) définie par le tableau suivant :

x y	1	3
-1	1	2
0	0	a
2	2	0

- 1 Déterminer les séries marginales de x et y.
- **2** Déterminer le réel a pour que l'on ait $G\left(\frac{1}{6},2\right)$ où G désigne le point moyen de la série
- PROFESSEIR DE RANGE 3 On donne a = 1. Calculer la variance de x, la variance de y et la covariance de la série