Série D Sujet bac 2013 -

DE MARILITATION ARIEN EISERLIE

Exercice

4 points

Les caractères X et Y sont distribués suivant le tableau à double entrée ci-après :

X Y	1 PROT	0	2
-2	4	0	2
-1	3	5	0
0	2	1	2

- 1 Dresser la loi marginale de X et celle de Y.
- 2 Trouver les coordonnées du point moyen G(X,Y).
- 3 Déterminer l'équation de la droite de régression de Y en X.
- 4 Calculer le coefficient de corrélation linéaire de la série statistique.

Exercice

4 points

Le plan (\mathscr{P}) est rapporté à un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$.

1 Résoudre dans l'ensemble des nombres complexes, l'équation $(E): Z^3 + 8 = 0$. On donnera les solutions de (E) sous la forme algébrique.

Soit A, B, et C les points d'affixes des complexes : $Z_A = 1 + i\sqrt{3}$; $Z_B = -2$; $Z_C = -2$ $1 - i\sqrt{3}$.

- a. Calculer le module et un argument de U tel que : $U = \frac{Z_C Z_A}{Z_B Z_A}$.
 - **b.** En déduire la nature du triangle ABC.

Soit S, la rotation définie dans (\mathcal{P}) telle que : S(A) = C et S(C) = B.

- 3 a. Déterminer l'expression complexe de S.
 - **b.** Déterminer les éléments caractéristiques de S.

Problème

12 points

Partie A

LIBERTY DE MARTINATIONES Soit g la fonction numérique de la variable réelle x définie sur $]0; +\infty[$ par :

$$g(x) = 1 - x^2 - \ln x$$

1 Étudier les variations de g, puis dresser son tableau de variation.

2 Calculer g(1), puis en déduire le signe de g sur $[0; +\infty[$.

F.B. F. Hindung Co.

Partie B

On considère la fonction numérique f de la variable réelle x définie par :

$$f(x) = \begin{cases} 1 + x - e^{1-x} & \text{si } x \le 1\\ \frac{2x - x^2 + \ln x}{x} & \text{si } > 1 \end{cases}$$

On désigne par (\mathscr{C}) , la courbe représentative de f dans le repère orthonormé (O, \vec{i}, \vec{j}) du plan d'unité graphique : 2 cm.

1 Déterminer l'ensemble de définition de la fonction f.

2 a. Étudier la continuité et la dérivabilité de f au point x = 1.

b. Pour $x \in]1; +\infty[$, exprimer f'(x) en fonction de g(x).

 $\mathbf{3}$ Étudier les variations de f et dresser son tableau de variation.

Démontrer que la droite (Δ) d'équation y = 2 - x est asymptote à la courbe (\mathscr{C}) de la fonction f et étudier la position de la droite (Δ) par rapport à cette courbe.

5 Écrire l'équation de la tangente (\mathcal{T}) à la courbe (\mathcal{C}) de f en x=0.

6 Étudier les branches infinies de la courbe (\mathscr{C}) de la fonction f.

7 Construire dans le même repère, la courbe (\mathscr{C}) de f, la droite (Δ) et la tangente (\mathscr{T}).

8 Calculer l'aire $\mathscr{A}(D)$ du domaine du plan limité par la courbe (\mathscr{C}) , la droite (Δ) et les axes $x = \frac{3}{2}$ et x = e.

On prendra $\ln 2 \approx 0, 7$; $e \approx 2, 7$.

