Sujet bac 2009 - Série D

Exercice

5 points

honor Martinania Le plan complexe est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . On considère le polynôme complexe p défini pour tout complexe $\mathbb{Z}/par:\mathbb{Z}/par$

$$p(z) = z^3 - 10iz^2 - (12 - 16i)z + 160 + 120i$$

- **1** Montrer que l'équation p(z) = 0 admet une solution z_0 de la forme $i \alpha, \alpha \in \mathbb{R}^*$.
- 2 Déterminer les complexes a et b pour lesquels $p(z) = (z 10i)(z^2 + az + b)$.
- **3** Résoudre dans l'ensemble \mathbb{C} des nombres complexes, l'équation p(z) = 0.
- 4 Soit I, J et K les points du plan complexe dont les affixes sont respectivement : $z_1 = -4 + 2i$; $z_2 = 4 - 2i$ et $z_3 = 10i$.
 - a. Démontrer que l'écriture complexe de la similitude plane directe S telle que S(K) = $K \text{ et } S(J) = I \text{ est } z' = \frac{1}{2}(1-i)z - 5 + 5i.$
 - **b.** Donner les éléments caractéristiques de S (centre, rapport et une mesure de son angle).

Exercice 2

5 points

Le plan vectoriel $(\overrightarrow{\mathscr{P}})$ est rapporté à une base $(\overrightarrow{i}, \overrightarrow{j})$.

Soit f un endomorphisme de $(\overrightarrow{\mathscr{P}})$ qui à tout vecteur $\overrightarrow{u}(x,y)$ associe $\overrightarrow{u}'(x',y')$ tel que :

$$\begin{cases} x' = \frac{4}{5}x + \frac{3}{5}y \\ y' = \frac{3}{5}x - \frac{4}{5}y \end{cases}$$

- 1 Démontrer que f est une symétrie vectorielle.
- 2 Déterminer sa base (ensemble des vecteurs invariants).
- 3 Déterminer sa direction (ensemble des vecteurs transformés en leur opposés).

Problème 5 points On considère la fonction numérique f de la variable réelle x définie, continue et dérivable sur \mathbb{R} par:

$$f(x) = x - 2 + \frac{1 + \ln x}{x}$$

On note (\mathscr{C}) la courbe représentative de f dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) d'unité graphique 2 cm.

Partie A

Soit g la fonction numérique de la variable réelle x définie, continue et dérivable sur \mathbb{R}_+^* par :

$$g(x) = x^2 - \ln x H^{1/4}$$

- 1 Dresser le tableau de variation de g.
- **2** En déduire le signe de g(x) suivant les valeurs de x sur \mathbb{R}_+^* .

Partie B

- **a.** Déterminer les limites de f en 0 et en $+\infty$.
 - **b.** Dresser le tableau de variation de f.
 - c. Démontrer que l'équation f(x) = 0 admet une solution unique à déterminer.
- **2** Démontrer que (\mathscr{C}) admet deux branches infinies.
- **3** a. Montrer que la droite (Δ) d'équation y = x 2 est asymptote à (\mathscr{C}) .
 - **b.** Préciser la position de la courbe (\mathscr{C}) par rapport à la droite (Δ).
 - **c.** Construire la courbe (\mathscr{C}) et la droite (Δ).

Partie C

- **a.** Démontrer que f admet une bijection réciproque f^{-1} définie sur \mathbb{R} .
 - **b.** Démontrer que f^{-1} est dérivable sur \mathbb{R} .
 - c. Déterminer $(f^{-1})'(0)$.
- **2** Construire la courbe (\mathscr{C}^{-1}) de f^{-1} dans le même repère que (\mathscr{C}) .
- **3 a.** Déterminer l'aire de la partie du plan limitée par la courbes (\mathscr{C}) , la droite y=x-2 et les droites d'équations $x=\frac{1}{e},\ x=m$ où m est un réel supérieur à 1.
 - **b.** Calculer la limite de cette aire en $+\infty$.

