Correction bac 2020 - Série C

Anthread Production of the Pro

Exercice 1

$$2x - 7y = 3 \iff 2x - 3 = 7y$$
, avec $y \in \mathbb{Z}$
 $\iff 2x - 3 \text{ est un multiple de } 7$
 $\iff 2x - 3 \equiv 0 [7]$
 $\iff 2x \equiv 3 [7]$

D'où les équations (E_0) et (E_1) sont équivalentes.

2 Déterminons d'abord une solution particulière de l'équation $2x \equiv 3$ [7]

2 et -7 étant premiers entre eux, déterminons $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tels que 2u - 7v = 1.

De l'égalité $7 = 2 \times 3 + 1$, on en déduit que $2 \times (-3) - 7 \times (-1) = 1$.

En multipliant membre à membre l'égalité précédente par 3, on obtient : $2 \times (-9) - 7 \times (-3) = 3$. On en déduit que (-9, -3) est une solution particulière de (E_1) et on a $2 \times (-9) \equiv 3$ [7].

Déterminons l'ensemble de solutions de l'équation (E_1)

$$\begin{cases} 2x \equiv 3 \, [7] \\ 2 \times (-9) \equiv 3 \, [7] \end{cases} \iff 2x \equiv 2 \times (-9) \, [7] \iff 2(x+9) \equiv 0 \, [7] \iff 7 \text{ divise } 2(x+9).$$

Comme 7 est premier avec 2, alors d'après le théorème de Gauss, 7 divise x + 9.

Il existe donc un entier $k \in \mathbb{Z}$ tel que x + 9 = 7k. D'où x = -9 + 7k.

Les solutions de l'équation (E_1) sont l'ensemble $\{-9+7k ; k \in \mathbb{Z}\}.$

- 3 En remplaçant x par -9+7k dans l'équation $(E_0): 2x-7y=3$, on obtient y=-3+2k. L'ensemble des solutions de l'équation (E_0) est l'ensemble $\{(-9+7k, -3+2k); k \in \mathbb{Z}\}$.
- **a.** $A = \{1; 5; 19; 95\}.$
 - **b.** Soit $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ vérifiant le système : $\begin{cases} 2x 7y = 3 \\ xy = 95 \end{cases}$

Comme 2x - 7y = 3, alors 2x - 7y > 0. Donc x > y.

En utilisant 4. a., on en déduit que les solutions (x,y) de l'équation xy=95 vérifiant x>y appartiennent à l'ensemble : $I=\left\{ \left(95,1\right),\left(-1,-95\right),\left(-5,-19\right),\left(19,5\right)\right\}$.

Déterminons le couple $(x, y) \in I$ solution de l'équation 2x - 7y = 3

- $2 \times 95 7 \times 1 \neq 3$. Donc (95,1) n'est pas solution de l'équation 2x 7y = 3.
- $2 \times (-1) 7 \times (-95) \neq 3$. Donc (-1, -95) n'est pas solution de l'équation 2x 7y = 3.
- $2 \times (-5) 7 \times (-19) \neq 3$. Donc (-5, -19) n'est pas solution de l'équation 2x 7y = 3.
- $2 \times 19 7 \times 5 = 3$. Donc (19,5) est solution de l'équation 2x 7y = 3.

D'où (19,5) est le seul couple solution du système $\begin{cases} 2x - 7y = 3 \\ xy = 95 \end{cases}$

Autre méthode

Soit $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ vérifiant le système : $\begin{cases} 2x - 7y = 3 \\ xy = 95 \end{cases}$

(x,y) vérifie 2x-7y=3. D'après 3., (x,y) est de la forme $(-9+7k\,,\,-3+2k)$ où $k\in\mathbb{Z}$.

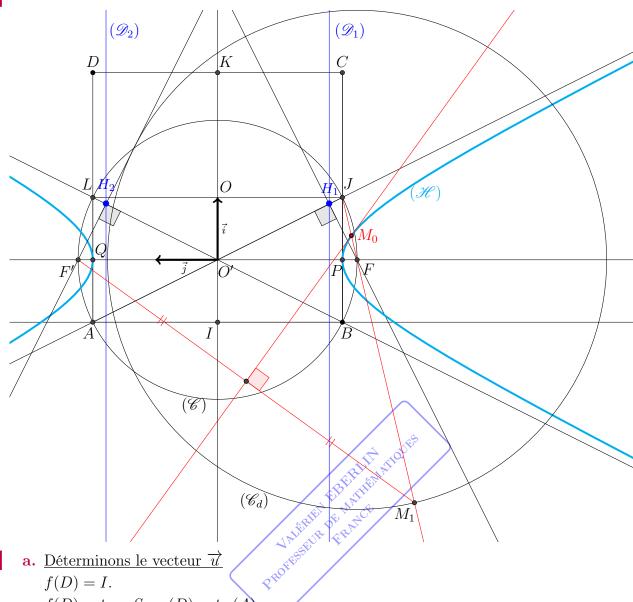
Et, (-9+7k, -3+2k) où $k \in \mathbb{Z}$ vérifie xy = 95 si (-9+7k)(-3+2k) = 95 ou encore $14k^2 - 39k - 68 = 0$.

encore $14k^2 - 39k - 68 = 0$. L'équation $14k^2 - 39k - 68 = 0$ admet dans \mathbb{Z} une seule solution k = 4.

En remplaçant k par 4 dans (-9+7k, -3+2k), on a $(-9+7\times4, -3+2\times4) = (19, 5)$.

Donc (19,5) est le seul couple solution du système $\begin{cases} 2x - 7y = 3 \\ xy = 95 \end{cases}$

Exercice 2



a. Déterminons le vecteur \overrightarrow{u} 2

f(D) = I.

 $f(D) = t_{\overrightarrow{u}} \circ S_{(OL)}(D) = t_{\overrightarrow{u}}(A)$

On en déduit que $t_{\overrightarrow{d}}(A) = I$. D'où $\overrightarrow{d} = \overrightarrow{AI}$

- **b.** Déterminons f(K) $\overline{f(K) = t_{\overrightarrow{AI}} \circ S_{(OL)}}(K) = t_{\overrightarrow{AI}}(I) = B.$
- **a.** Les asymptotes de (\mathcal{H}) sont les droites (AJ) et (BL)3
 - b. Les foyers sont les points d'intersection du cercle fondamental (cercle de centre O' et de rayon O'J) et de l'axe focal (PQ).
 - c. P et Q sont les sommets de l'hyperbole (\mathcal{H}) .
 - d. Le projeté orthogonal H_1 du foyer F sur la diagonale [AJ] du rectangle fondamental ABJL est un point de la directrice associé au foyer F.

D'où (\mathcal{D}_1) est la perpendiculaire à (PQ) passant par H_1 .

De même, le projeté orthogonal H_2 du foyer F' sur la diagonale [LB] du rectangle fondamental ABJL est un point de la directrice associé au foyer F'.

D'où (\mathcal{D}_2) est la perpendiculaire à (PQ) passant par H_2 .

e. Soit M_1 le point d'intersection de la demi-droite [JF) et du cercle directeur (\mathscr{C}_d) associé à F (cercle de centre F et de rayon $2 \times O'P$).

Alors, M_0 est le point d'intersection de la médiatrice de $[F'M_1]$ et du segment [FJ]. En effet,

 $M_0F'-M_0F=M_0M_1-M_0F=FM_1=2\times O'P$. Ce qui prouve que $M_0\in(\mathcal{H})$.

f. O'P = 3 et $O'J = \sqrt{OP^2 + PJ^2} = \sqrt{3^2 + \left(\frac{3}{2}\right)^2} = \frac{3}{2}\sqrt{5}$.

D'où l'excentricité $e = \frac{O'J}{O'P} = \frac{\frac{3}{2}\sqrt{5}}{2} = \frac{\sqrt{5}}{2}$.

- **g.** Voir figure.
- **a.** (O', \vec{j}) et (O', \vec{i}) étant respectivement l'axe focal et l'axe non focal de (\mathcal{H}) , on en déduit que l'équation cartésienne de (\mathcal{H}) est : $-\frac{x^2}{O'O^2} + \frac{y^2}{O'O^2} = 1$.

Or $O'O = \|\vec{i}\| = 1$ et $O'Q = 2 \times \|\vec{j}\| = 2$.

D'où l'équation cartésienne de (\mathcal{H}) : $-\frac{x^2}{1^2} + \frac{y^2}{2^2} = 1$ ou encore $x^2 - \frac{y^2}{4} = -1$.

b. Soit M(x,y) un point de (\mathcal{H}) et H le projeté orthogonal de M sur la directrice (\mathcal{D}_1) associé à F.

Montrons que $\frac{MF}{MH} = \frac{\sqrt{5}}{2}$

Montrons que $\frac{ML}{MH} = \frac{\sqrt{3}}{2}$ De l'équation $(\mathcal{H}): -\frac{x^2}{1^2} + \frac{y^2}{2^2} = 1$, on en déduit que l'hyperbole $(\mathcal{H}):$

- a pour sommets les points : Q(0,2), P(0,-2),
- a pour foyers les points : $F'(0, \sqrt{5})$, $F(0, -\sqrt{5})$;
- pour directrices, les droites (\mathcal{D}_1) et (\mathcal{D}_2) d'équations respectives $y = -\frac{4}{\sqrt{5}}$ et $y = \frac{4}{\sqrt{5}}$.

H a pour coordonnées : $H(x, \frac{4}{\sqrt{5}})$

On a:
$$MF^2-\left(\frac{\sqrt{5}}{2}\right)^2MH^2=x^2+(y+\sqrt{5})^2-\frac{5}{4}\left(y+\frac{4}{\sqrt{5}}\right)^2=x^2+y^2+2\sqrt{5}y+5-\frac{5}{4}\left(y^2+\frac{8}{\sqrt{5}}y+\frac{16}{5}\right).$$

$$=x^2+y^2+2\sqrt{5}y+5-\frac{5}{4}\left(y^2+\frac{8}{\sqrt{5}}y+\frac{16}{5}\right).$$
 On en déduit que $\frac{MF}{MH}=\frac{\sqrt{5}}{2}$. Donc l'excentricité $e=\frac{\sqrt{5}}{2}$.

Exercice 3

a. f' est dérivable sur $]0; +\infty[$.

$$\forall x \in]0; +\infty[, f'(x) = \frac{x^2 - 4}{2x} = \frac{(x-2)(x+2)}{2x}.$$

b. f' est du signe de la fonction : $x \mapsto x - 2$ sur $]0; +\infty[$.

Limites de f aux bornes de $]0; +\infty[$

$$\lim_{x \to 0_+} f(x) = -\frac{1}{4} - 2 \lim_{x \to 0_+} \ln x = +\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \left(\frac{1}{4} - \frac{1}{4x^2} - \frac{2\ln x}{x^2} \right) = +\infty.$$

D'où le tableau de variation :

x	() 2 +0	∞
f'(x)		- 0 +	
f(x)		$+\infty$ $\frac{3}{4}-2\ln 2$	∞

c. $f(3) \approx -0.197$ et $f(4) \approx 0.977$.

La fonction f est continue et strictement croissante sur]3;4[.

De plus f(3).f(4) < 0.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in [3;4]$ tel que $f(\alpha) = 0$.

|2|

a. Remarquons d'abord que si
$$x \ge 3$$
, $8 \ln x + 1 > 0$.

On a:
$$f(x) = 0 \iff \frac{x^2 - 1}{4} = 2 \ln x$$

$$\iff x^2 = 8 \ln x + 1$$

$$\iff x = \sqrt{8 \ln x + 1} \text{ (le cas } x = -\sqrt{8 \ln x + 1} \text{ est impossible car } x \ge 3)$$

D'où les équations f(x) = 0 et g(x) = x sont équivalentes sur $[3; +\infty[$.

b. g est continue et dérivable sur [3; 4].

De plus, $|g'(x)| \leq \frac{4}{9}$ pour tout $x \in [3; 4]$.

D'après le théorème de l'inégalité des accroissements finis, on a :

$$\forall x \in [3; 4], \ \forall y \in [3; 4], \ |g(x) - g(y)| \le \frac{4}{9}|x - y|$$

Comme $\alpha \in [3;4]$, on peut appliquer l'inégalité précédente en x quelconque où $x \in [3; 4]$ et en $y = \alpha$.

On a alors:

$$\forall x \in [3; 4], |g(x) - g(\alpha)| \le \frac{4}{9}|x - \alpha|$$

Or d'après 2. a., $g(\alpha) = \alpha$. Il en résulte que : $\forall x \in [3; 4], |g(x) - \alpha| \leq \frac{4}{9}|x - \alpha|$.

a. Soit \mathscr{P}_n , la propriété : $u_n \in [3; 4]$.

Montrons par récurrence que : $\forall n \in \mathbb{N}, \mathscr{P}_n$.

Initialisation

 $u_0 = 3 \in [3; 4].$

Comme $u_0 \in [3; 4]$, alors d'après 2. b., $u_1 = g(u_0) \in [3; 4]$.

Les propriétés \mathscr{P}_0 et \mathscr{P}_1 sont vérifiées.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que : $u_n \in [3;4]$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que : $u_{n+1} \in [3;4]$.

On a $u_n \in [3; 4]$.

On en déduit d'après 2. b., que $g(u_n) \in [3; 4]$.

Or $g(u_n) = u_{n+1}$. D'où $u_{n+1} \in [3; 4]$.

Donc \mathscr{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}$.

b. Soit $n \in \mathbb{N}$.

On peut appliquer l'inégalité obtenue en 2.b., en $x = u_n$ (car $u_n \in I$).

On a alors:

$$|g(u_n) - \alpha| \le \frac{4}{9}|u_n - \alpha|$$

Or $g(u_n) = u_{n+1}$. Il en résulte que $|u_{n+1} - \alpha| \le \frac{4}{9}|u_n - \alpha|$ pour tout $n \in \mathbb{N}$.

c. Soit \mathscr{P}_n , la propriété : $|u_n - \alpha| \leq \left(\frac{4}{9}\right)^n$.

Montrons par récurrence que : $\forall n \in \mathbb{N}, \ \mathcal{P}_{n-1}$ Initialisation

Commo 2 \leq ...

Comme $3 \le \alpha \le 4$, alors $-1 \le u_0 - \alpha \le 0$ donc $|u_0 - \alpha| \le 1 = \left(\frac{4}{9}\right)^0$. La propriété \mathcal{P}_0 est vérifiée.

Supposons \mathscr{P}_n c'est à dire supposons que : $|u_n - \alpha| \leq \left(\frac{4}{9}\right)^n$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que : $|u_{n+1} - \alpha| \leq \left(\frac{4}{9}\right)^{n+1}$.

D'après 3. b. $|u_{n+1}-\alpha| \leq \frac{4}{9}|u_n-\alpha|$, et par hypothèse de récurrence, $|u_n-\alpha| \leq \left(\frac{4}{9}\right)^n$.

Ainsi,
$$|u_{n+1} - \alpha| \le \frac{4}{9} |u_n - \alpha| \le \frac{4}{9} \left(\frac{4}{9}\right)^n = \left(\frac{4}{9}\right)^{n+1}$$
.

Donc \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}$.

Par passage à la limite, $0 \le \lim_{n \to +\infty} |u_n - \alpha| \le \lim_{n \to +\infty} |u_n - \alpha| \le \lim_{n \to +\infty} \left(\frac{4}{9}\right)^n = 0$.

Par conséquent, $\lim_{n \to +\infty} |u_n - \alpha| = 0$ et donc $\lim_{n \to +\infty} u_n = \alpha$.

e. Soit $n \in \mathbb{N}$ tel que $\left(\frac{4}{9}\right)^n \le 10^{-2}$.

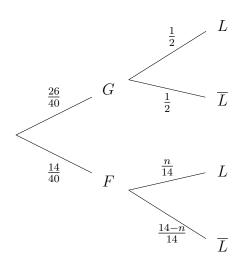
Par croissance de la fonct:

Par croissance de la fonction logarithme, on a : $n \ln \frac{4}{9} \le -2 \ln 10$.

D'où
$$n \ge \frac{2 \ln 10}{\ln 9 - \ln 4} (\approx 5,67).$$

Donc $n_0 = 6$.

Exercice



3 Première solution

13 garçons et n filles sur un effectif total de 40 élèves sont inscrits dans un centre d'apprentissage de langues.

Donc la probabilité L qu'une personne choisie soit inscrite dans un centre d'apprentissage de langues est de $\frac{13+n}{40}$.

Seconde solution

D'après l'arbre réalisé en 2., on en déduit que :

$$P(L) = \frac{26}{40} \times \frac{1}{2} + \frac{14}{40} \times \frac{n}{14} = \frac{13+n}{40}.$$

4

