Correction bac 2018 Série C

Walfala Je Martin Arica Roffishi Roffis

Exercice

1

$$(S): \begin{cases} x \equiv 2 \, [36] \\ x \equiv 3 \, [25] \end{cases} \iff \begin{cases} x = 2 + 36a \text{ avec } a \in \mathbb{Z} \\ x = 3 + 25b \text{ avec } b \in \mathbb{Z} \end{cases} \iff 2 + 36a = 3 + 25b \iff (E): 36a - 25b = 1.$$

On en déduit que le système d'équations (S) et l'équation (E) sont équivalentes.

2
$$36 \times (-9) - 25 \times (-13) = -324 + 325 = 1$$
.
Donc $(-9, -13)$ est solution de l'équation $(E): 36a - 25b = 1$.

3

$$36a - 25b = 1 \iff 36a - 1 = 25b \text{ avec } b \in \mathbb{Z}$$

 $\iff 36a - 1 \text{ est un multiple de } 25$
 $\iff 36a - 1 \equiv 0 [25]$
 $\iff 36a \equiv 1 [25]$

On en déduit que les équations (E) et (E') sont équivalentes.

4 Comme
$$36 \times (-9) = 1 + 25 \times (-13)$$
, alors $36 \times (-9) \equiv 1$ [25]. Donc -9 est l'inverse de 36 modulo 25.

5

$$\begin{cases} 36a \equiv 1 \, [25] \\ 36 \times (-9) \equiv 1 \, [25] \end{cases} \iff 36a \equiv 36 \times (-9) \, [25] \iff 36(a+9) \equiv 0 \, [25] \iff 25 \text{ divise } 36(a+9).$$

Comme 25 est premier avec 36, d'après le théorème de Gauss, 25 divise a + 9.

Il existe donc un entier $k \in \mathbb{Z}$ tel que a+9=25k. D'où a=-9+25k.

Les solutions de l'équation (E') sont l'ensemble $\{-9+25k \; ; \; k \in \mathbb{Z}\}.$

- 6 **a.** En remplaçant a par -9+25k dans l'équation 36a-25b=1, on obtient b=-13+36k. L'ensemble des solutions de l'équation (E) est $\{(-9+25k; -13+36k); k \in \mathbb{Z}\}.$
 - **b.** Soit x une solution de (S).

x est de la forme x = 2 + 36a où $a \in (E')$.

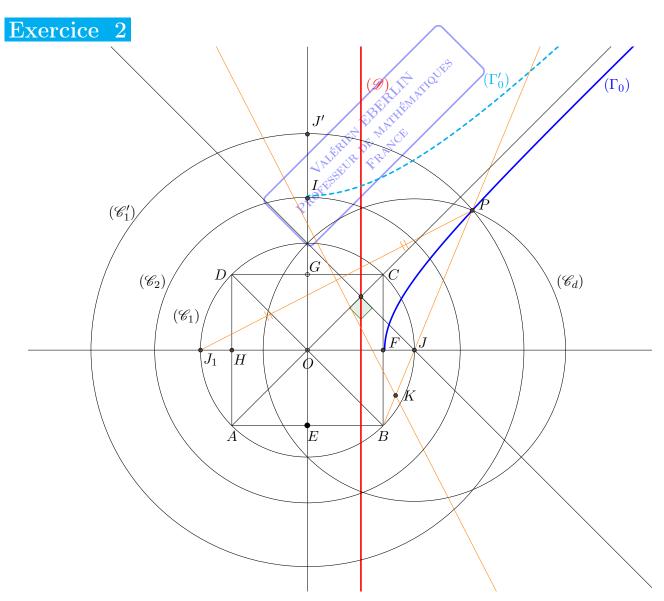
D'après la question précédente, a s'écrit a = 39 + 25k avec $k \in \mathbb{Z}$.

D'où
$$x = 2 + 36a = 2 + 36(-9 + 25k) \neq -322 + 900k$$
 avec $k \in \mathbb{Z}$.

$$0 < x < 50 \iff 0 < -322 + 900k < 50$$

$$\iff \frac{322}{900} < k < \frac{372}{900}$$

 $0 < x < 50 \iff 0 < -322 + 3000$ $\iff \frac{322}{900} < k < \frac{372}{900}$ Il n'existe pas d'entier k compris entre $\frac{322}{900}$ et $\frac{372}{900}$. Donc le système (S) n'admet pas de solution x telle que 0 < x < 50.



- 1 Voir figure.
- **a.** (OF) est l'axe focale.

De plus, OC est la demi-distance focale.

Donc J est le point d'intersection du cercle (\mathscr{C}_1) et de la demi-droite [OF).

b. J étant un foyer de (Γ) , le projeté orthogonal de J sur l'une des diagonales [AC] ou [BD] est un point de la directrice associé à J.

D'où (\mathcal{D}) est la droite perpendiculaire à l'axe focal (OF) et passant par le projeté orthogonal de J sur l'une des diagonales du rectangle fondamental.

- **c.** Notons:
- J_1 le second foyer de l'hyperbole (Γ) ; \mathcal{C}_d le cercle directeur associé Γ - (\mathcal{C}_d) le cercle directeur associé à J c'est à dire le cercle de centre J et de rayon $2 \times OF = 4$;
 - P le point d'intersection de BJ et de (\mathscr{C}_d) .

K est alors le point d'intersection de la médiatrice de $[J_1P]$ et de [BJ). En effet,

$$KJ_1 - KJ = KJ_1 - (KP - JP) = KJ_1 - KP + 4.$$

Comme K est un point de la médiatrice du segment $[J_1P]$ alors $KJ_1 = KP$.

D'où $KJ_1 - KJ = 4$.

Ce qui prouve que K est un point de l'hyperbole (Γ).

- **d.** [OC) est la demi-droite asymptote de (Γ) située dans la portion délimitée par les demi-droites [OF) et [OG).
- e. Construire K' symétrique de K par rapport à Ψ axe focal (OF). À partir des points F et K' et sachant que (OC) est une asymptote à (Γ_0) , on donne une allure de (Γ_0) .
- 3 Notons Ω le centre de la similitude $S_{\mathcal{X}} h_{(\Omega,2)}$ l'homothétie de centre Ω et de rapport 2 et $S_{(AC)}$ la symétrie axiale d'axe (AC).

S s'écrit donc $S = h_{(\Omega,2)} \circ S_{(AC)}$ avec $\Omega \in (AC)$.

Déterminons le centre Ω

$$S(F) = I.$$

$$S(F) = h_{(\Omega,2)} \circ S_{(AC)}(F) = h_{(\Omega,2)}(G).$$

On en déduit que $h_{(\Omega,2)}(G) = I$ et par conséquent $2\overrightarrow{\Omega G} = \overrightarrow{\Omega I}$.

En appliquant la relation de Chasles dans l'égalité précédente, on a :

 $2\overrightarrow{\Omega O} + 2\overrightarrow{OG} = \overrightarrow{\Omega O} + \overrightarrow{OI}$. Il s'ensuit que $\overrightarrow{\Omega O} = \overrightarrow{OI} - 2\overrightarrow{OG} = \overrightarrow{O}$ car I est le symétrique de O par rapport à G.

D'où
$$\Omega = O$$
.

- a. Le rectangle fondamental de (Γ) étant un carré, (Γ) est une hyperbole équilatère. Comme toute similitude conserve la nature des figures, alors le rectangle fondamental de (Γ') est un carré. Donc (Γ') est une hyperbole équilatère.
 - **b.** Toute similitude conserve le rapport des distances. On en déduit que (Γ) et (Γ') ont même excentricité. Donc l'excentricité de (Γ') est $\frac{OC}{OF} = \sqrt{2}$.
 - **c.** S(O) = O et S(F) = I.

Comme le cercle de centre O et de rayon OF est le cercle principal de (Γ) , alors le cercle de centre O et de rayon OI est le cercle le cercle principal de (Γ') .

d. $S(A) = h_{(O,2)} \circ S_{(AC)}(A) = h_{(O,2)}(A) \in (AC).$

$$S(C) = h_{(O,2)} \circ S_{(AC)}(C) = h_{(O,2)}(C) \in (AC).$$

La droite (AC) est stable par la similitude S. On en déduit que c'est une asymptote de (Γ') .

De même,

$$S(B) = h_{(O,2)} \circ S_{(AC)}(B) = h_{(O,2)}(D) \in (BD).$$

$$S(D) = h_{(O,2)} \circ S_{(AC)}(D) = h_{(O,2)}(B) \in (BD).$$

La droite (BD) est stable par la similitude S. On en déduit que c'est la seconde asymptote de (Γ') .

e. S(O) = O et S(F) = I.

asymptote de (Γ') . S(O) = O et S(F) = I. Comme (OF) est l'axe focal de (Γ) , alors (OI) est l'axe focal de (Γ') .

Exercice 3

Partie A

- 1 $\forall x \in]0; +\infty[: g'(x) = (x+1)e^x.$
- 2 $\forall x \in]0; +\infty[: g'(x) > 0.$

D'où le tableau de variation :

x	0	±,∞,
g'(x)		+ PROFFE
g(x)	-1	$+\infty$

3 a. $g(\frac{1}{2}) \approx -0.17$ et $g(1) \approx 1.71$.

La fonction g est continue et strictement croissante sur $\frac{1}{2}$; 1[.

De plus $g(\frac{1}{2}).g(1) < 0$.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in]\frac{1}{2};1[$ tel que $g(\alpha)=0$.

b. g est strictement croissante sur $]0; +\infty[$.

De plus, $g(\alpha) = 0$.

On en déduit que :

- $\forall x \in]0; \alpha[, g(x) < 0.$
- $\forall x \in]\alpha; +\infty[, g(x) > 0.$

Partie B

- $\lim_{x \to 0_+} f(x) = +\infty; \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^x \left(1 \frac{\ln x}{e^x} \right) = +\infty.$
- **5** $\forall x \in]0; +\infty[, f'(x) = e^x \frac{1}{x} = \frac{g(x)}{x}.$
- **6** a. f' est du signe de g sur $]0; +\infty[$.

x	$\alpha + \infty$
f'(x)	- 0 +
f(x)	$+\infty$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$ $f(\alpha)^{\frac{1}{12}}$

b. f est continue sur $]0; +\infty[$.

De plus, f est strictement décroissante sur]0; $\alpha[$ puis croissante sur $]\alpha; +\infty[$.

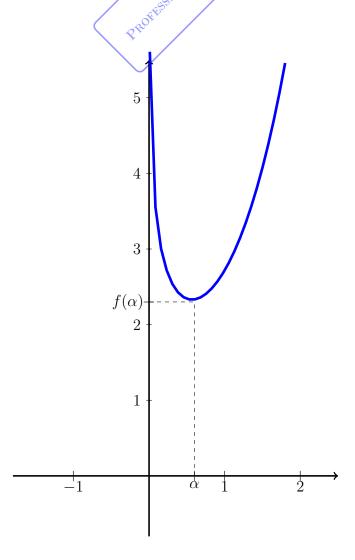
Donc f admet un minimum en α .

 α vérifie $f'(\alpha) = \frac{\alpha e^{\alpha} - 1}{\alpha} = 0$. On en déduit que $e^{\alpha} = \frac{1}{\alpha}$ et que $\alpha = \frac{1}{e^{\alpha}}$.

En remplaçant e^{α} par $\frac{1}{\alpha}$ et α par $\frac{1}{e^{\alpha}}$ dans l'expression $f(\alpha) = e^{\alpha} - \ln \alpha$, on a : $f(\alpha) = e^{\alpha} - \ln \alpha = \frac{1}{\alpha} - \ln \frac{1}{e^{\alpha}} = \frac{1}{\alpha} + \alpha.$

$$f(\alpha) = e^{\alpha} - \ln \alpha = \frac{1}{\alpha} - \ln \frac{1}{e^{\alpha}} = \frac{1}{\alpha} + \alpha.$$

Donc le minimum est atteint en $f(\alpha) = \alpha + \frac{1}{\alpha}$.



Exercice 4

Nous noterons $(x_i, n_{i\bullet})$, les couples qui définissent la distribution marginale de la variable X, et $(y_j, n_{\bullet j})$ les couples qui définissent la distribution marginale de la variable Y.

Dans ce cas, on a : $\sum_{i} n_{i \bullet} = \sum_{j} n_{\bullet j}$ que l'on pose égal à N.

Loi marginale de X.

X	2	3
n_{iullet}	5	8

Loi marginale de Y.

Y	-1	2	3			
$n_{ullet j}$	II 3 al	3	7			

2

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{2} n_{i \bullet} x_{i} = \frac{5 \times 2 + 8 \times 3}{13} = \frac{34}{13} \text{ white the plant of }$$

$$\overline{Y} = \frac{1}{N} \sum_{j=1}^{3} n_{\bullet j} y_{j} = \frac{3 \times (-1) + 3 \times 2 + 7 \times 3}{13} = \frac{24}{13}$$

Les coordonnées du point moyen sont G sont $\left(\frac{34}{13}, \frac{24}{13}\right)$.

3 a.

$$Cov(X,Y) = \frac{1}{N} \sum_{i=1}^{2} \sum_{j=1}^{3} n_{ij} x_i y_j - \overline{X}.\overline{Y}$$

$$= \frac{1}{13} (2 \times (-2) + 3 \times 6 + 1 \times (-3) + 3 \times 6 + 4 \times 9) - \frac{34}{13} \times \frac{24}{13}.$$

$$= \frac{29}{169}$$

b. L'équation de régression linéaire de Y en X est donnée par l'équation :

$$Y = aX + b$$
 où $a = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$ et $b = \overline{Y} - a\overline{X}$.

$$V(X) = \frac{1}{N} \sum_{i=1}^{2} n_i \cdot x_i^2 - \overline{X}^2 = \frac{1}{13} (5 \times 2^2 + 8 \times 3^2) - \left(\frac{34}{13}\right)^2 = \frac{40}{169}.$$

$$a = \frac{\frac{29}{169}}{\frac{40}{40}} = \frac{29}{40} \text{ et } b = \frac{24}{13} - \frac{29}{40} \times \frac{34}{13} = -\frac{1}{20}.$$

D'où l'équation de la droite de régression linéaire : $Y = \frac{29}{40}X - \frac{1}{20}$.

