Correction bac 2017 - Série C

Waterland France

Exercice 1

- a Comme PGCD (48; 35) = 1, d'après le théorème de Bézout, l'équation (E): 48x + 35y = 1 admet des solutions dans $\mathbb{Z} \times \mathbb{Z}$.
- b $48 \times (-8) = -384 = 1 + 35 \times (-11) \equiv 1[35].$ D'où 48 et -8 sont inverses modulo 35.
- c

$$48x + 35y = 1 \iff 48x - 1 = 35(-y)$$
, avec $y \in \mathbb{Z}$
 $\iff 48x - 1$ est un multiple de 35
 $\iff 48x - 1 \equiv 0$ [35]
 $\iff 48x \equiv 1$ [35]

Les équations (E): 48x + 35y = 1 et $48x \equiv 1$ [35] sont équivalentes.

Solution particulière

D'après la question **b.**, $48 \times (-8) + 35 \times 11 = 1$.

D'où (-8;11) est une solution particulière de l'équation (E).

d -8 est une solution particulière de l'équation $48x \equiv 1 [35]$.

Soit x une solution de l'équation $48x \equiv 1 [35]$,

$$\begin{cases} 48x \equiv 1 \, [35] \\ 48 \times (-8) \equiv 1 \, [35] \end{cases} \iff 48x \equiv 48 \times (-8) \, [35] \iff 48(x+8) \equiv 0 \, [35] \iff 35 \text{ divise } 48(x+8).$$

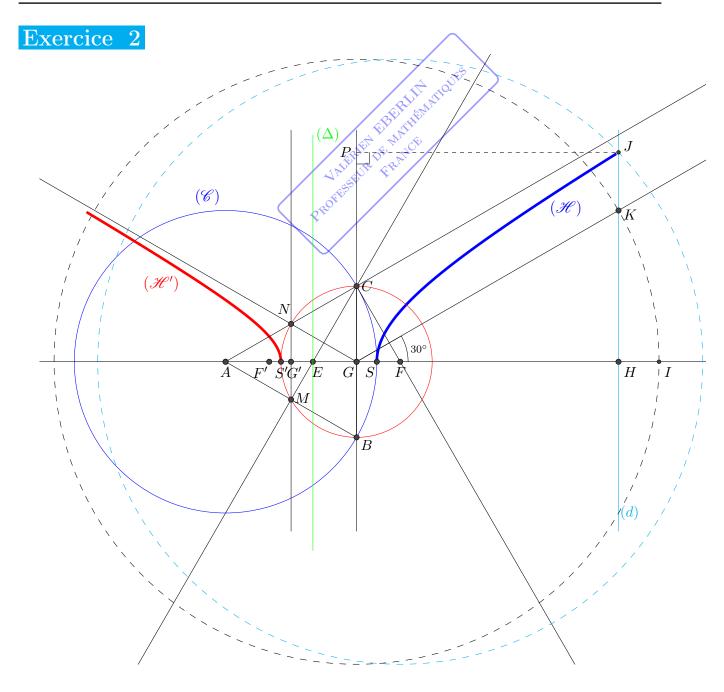
Comme 35 est premier avec 48, alors d'après le théorème de Gauss, 35 divise x + 8.

Il existe donc un entier $k \in \mathbb{Z}$ tel que x + 8 = 35k. D'où x = -8 + 35k.

Les solutions de l'équation $48x \equiv 1 [35]$ sont l'ensemble $\{-8 + 35k ; k \in \mathbb{Z}\}$.

En remplaçant x par -8+35k dans l'équation (E):48x+35y=1, on obtient y=11-48k.

L'ensemble des solutions de l'équation (E) est l'ensemble $\{(-8+35k; 11-48k); k \in \mathbb{Z}\}.$



4 EA = EC car E est le centre de gravité du triangle ABC.

EA = EF car F est le symétrique de A par rapport à E.

On en déduit que [EC] est la médiane relative au [AF] et a pour longueur la moitié de la longueur de [AF].

Donc le triangle ACF est rectangle en C et par conséquent les droites (CF) et (CA) sont perpendiculaires.

5 Axe focal

 \overline{A} étant le centre l'hyperbole, l'axe focal est la perpendiculaire à la directrice (BC) passant par A. C'est par conséquent la droite (AG).

F Foyer de (Γ)

 \overline{C} est un point d'intersection du cercle principal et de la directrice (BC).

On en déduit que la droite (AC) est une asymptote de l'hyperbole (Γ) .

Or C est également le projeté orthogonal du point F de l'axe focal (AG) sur l'asymptote (AC). Donc F est un foyer de l'hyperbole (Γ) .

- **a.** Voir la figure ci-dessus.
 - b. $\frac{AF}{AB} = \frac{c}{a}$ représente l'excentricité de l'hyperbole (Γ) .

Dans le triangle ABF rectangle en B, on a

$$\cos(\widehat{FAB}) = \cos(30^\circ) = \frac{AB}{AF}. \quad \text{D'où } \frac{AF}{AB} = \frac{1}{\cos(30^\circ)} = \frac{2\sqrt{3}}{3}$$

Soit K, le point d'intersection de la perpendiculaire à (AH) passant par H et de la parallèle à (AC) passant par G.

$$\cos(\widehat{HGK}) = \cos(30^\circ) = \frac{GH}{GK}$$
. D'où $GK = \frac{2\sqrt{3}}{3}GH$.

Le point I est donc le point d'intersection du cercle de centre G de rayon GK et de la demi-droite [GH).

8 Comme $J \in (\Gamma)$, alors $\frac{JF}{JP} = \frac{2\sqrt{3}}{3}$ où P est le projeté orthogonale de J sur la directrice (BC).

Or
$$JP = GH$$
 et d'après 7., on a : $\frac{2\sqrt{3}}{3}GH = GI$.

On en déduit que
$$JF = \frac{2\sqrt{3}}{3}JP = \frac{2\sqrt{3}}{3}GH = GI$$

J est donc le point d'intersection de la droite (d) et du cercle de centre F de rayon GI.

- 9 Voir figure.
- 10 a.

Notons l'homothétie h par $h_{(A,\frac{1}{2})}$ et notons $h_{(\Omega,k)},$ l'homothétie de centre Ω et de rapport k.

Centre de la similitude $h_{(A,\frac{1}{2})} \circ S_{(BC)}$

 \overline{G} est aussi le projeté orthogonal de A sur la droite (BC).

Soit Ω , le centre de la similitude s et (Δ) son axe.

Alors s s'écrit aussi en la composée commutative $s=h_{(\Omega,\frac{1}{2})}\circ S_{(\Delta)}=S_{(\Delta)}\circ h_{(\Omega,\frac{1}{2})}.$ D'où $s\circ s=h_{(\Omega,\frac{1}{4})}.$

On a:

$$s(A) = h_{(A, \frac{1}{2})} \circ S_{(BC)}(A) = G$$

$$s \circ s(A) = h_{(A,\frac{1}{2})} \circ S_{(BC)}(G) = h_{(A,\frac{1}{2})}(G) = G'$$
 où G' est le milieu de $[AG]$.

On en déduit que $h_{(\Omega,\frac{1}{4})}(A) = G'$.

Ou encore
$$\overrightarrow{\Omega G'} = \frac{1}{4} \overrightarrow{\Omega A}$$
.

En utilisant la relation de Chasles, on a : $\overrightarrow{\Omega A} + \overrightarrow{AG'} = \frac{1}{4} \overrightarrow{\Omega A}$

D'où
$$\overrightarrow{A\Omega} = \frac{4}{3}\overrightarrow{AG'} = \frac{2}{3}\overrightarrow{AG}$$
.

Donc
$$\Omega = E$$
.

Axe de la similitude $s = h_{(A,\frac{1}{2})} \circ S_{(BC)}$

L'axe de la similitude (Δ) est la perpendiculaire à la droite (AG) passant par E.

b. Foyer de (\mathcal{H}')

$$\overline{s(F) = h_{(E,\frac{1}{2})}} \circ S_{(\Delta)}(F) = h_{(E,\frac{1}{2})}(A) = F'$$
 où F' est le milieu de $[AE]$.

Comme F est le foyer de (\mathcal{H}) , alors F', milieu de [AE], est le foyer de (\mathcal{H}') .

Directrice de (\mathcal{H}')

$$\overline{s(B) = h_{(A,\frac{1}{2})} \circ S_{(BC)}(B)} = h_{(A,\frac{1}{2})}(B) = M$$
 où M est le milieu de $[AB]$.

$$s(C) = h_{(A,\frac{1}{2})} \circ S_{(BC)}(C) = h_{(A,\frac{1}{2})}(C) = N$$
 où N est le milieu de $[AC]$.

Comme (BC) est la directrice de (\mathcal{H}) associé au foyer F, alors (MN) est la directrice de (\mathcal{H}') associée au foyer F'.

Asymptote de (\mathcal{H}')

$$\overline{s(A) = G \text{ et } s(C)} = N.$$

Comme (AC) est l'asymptote de l'arc (\mathcal{H}) , alors (GN) est l'asymptote de l'arc (\mathcal{H}') .

Sommet de (\mathcal{H}')

$$\overline{s(A) = G \text{ et } s(C)} = N.$$

Comme le cercle (\mathscr{C}) de centre A de rayon [AC] est le cercle principal de (\mathscr{H}) , alors le cercle (\mathscr{C}') de centre G et de rayon GN est le cercle principal de (\mathscr{H}') .

On en déduit que S', point d'intersection de (\mathscr{C}') et de l'axe focal est le sommet de (\mathscr{H}') associé à F'.

c. Toute similitude conserve le rapport des distances.

On en déduit que l'excentricité de (Γ') est égale à l'excentricité de (Γ) et vaut $\frac{2\sqrt{3}}{3}$.

Exercice 3

1 a. La fonction $f: I \mapsto \mathbb{R}$ est continue et $1 \in I$.

Alors la fonction $x \mapsto F(x) = \int_1^x f(t) dt$ est dérivable sur I et on a : $\forall x \in I$ F'(x) = f(x).

b.

x	0	1	$+\infty$
$\ln(x+1)$	0	+ +	
x-1		- 0 +	
F'(x) = f(x)	0	- (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

- $\forall x \in]0; 1[, f(x) < 0 \text{ et } F \text{ est strictement décroissante.}$
- $\forall x \in]1; +\infty[, f(x) > 0 \text{ et } F \text{ est strictement croissante.}$

L'inégalité $F(x) \ge \frac{1}{2}(x-1)^2$ pour $x \ge 2$ est fausse. En effet, en intégrant par parties F(x), on trouve : $F(x) = \left(\frac{x^2}{2} - x - \frac{3}{2}\right) \ln(x+1) + \frac{x^2}{4} + \frac{3}{2}x + \frac{5}{4} - 2 \ln 2$.

D'où
$$F(x) - \frac{1}{2}(x-1)^2 = \left(\frac{x^2}{2} - x - \frac{3}{2}\right) \ln(x+1) - \frac{3}{4}x^2 + \frac{5}{2}x + \frac{3}{4} - 2\ln 2.$$

D'où $F(x) - \frac{1}{2}(x-1)^2 = \left(\frac{x^2}{2} - x - \frac{3}{2}\right) \ln(x+1) + \frac{3}{4}x^2 + \frac{5}{2}x + \frac{3}{4} - 2\ln 2.$ Le tableau des valeurs de $F(x) - \frac{1}{2}(x-1)^2$ réalise à l'aide d'un tableur, pour x allant de 2 à 2.9 avec un pas de 0.05, montre que $F(x) - \frac{1}{2}(x-1)^2 < 0$ pour au moins les valeurs de x comprises entre 2 et 2.8.

	82	▼ (3 fs =(0,5*(A2)*A2-(A2)-1,5)*LN((A2)*			
Ц	A	8	С	D	E
1	Valeur de x	"Valeur de F(x)-1/2"(x-1)^2"			
2	2	-0,284212794			
3	2,05	-0,278730741			
4	2,1	-0,272100307			
5	2,15	-0,264254395			
6	2,2	-0,255127398			
7	2,25	-0,244655138			
8	2,3	-0,232774812			
9	2,35	-0,219424938			
10	2,4	-0,204545301			
11	2,45	-0,188076913			
12	2,5	-0,169961959			
13	2,55	-0,150143759			
14	2,6	-0,12856673			
15	2,65	-0,105176339			
16	2,7	-0,079919076			
17	2,75	-0,052742411			
18	2,8	-0,023594766			
19	2,85	0,007574517			
20	2,9	0,040815211			

Cependant, l'on peut établir que $F(x) \geq F(2) + \frac{x^2}{2} - x$, ce qui permettra de répondre aux questions suivantes.

a. Montrons que :
$$\forall x \ge 2$$
, $F(x) \ge F(2) + \frac{x^2}{2} - x$

Soit $x \geq 2$.

Comme $f(t) \ge t - 1$ pour tout $t \ge 2$.

Alors par passage à l'intégrale, on a : $\int_2^x f(t) dt \ge \int_2^x (t-1) dt$.

En ajoutant membre à membre l'expression $\int_{t}^{2} f(t) dt$ à la dernière inégalité, on a :

$$\int_{1}^{2} f(t) dt + \int_{2}^{x} f(t) dt \ge \int_{1}^{2} f(t) dt + \int_{2}^{x} (t - 1) dt.$$

Il en résulte que $F(x) \ge F(2) + \frac{x^2}{2}$ pour tout $x \ge 2$.

b. Calcul de $\lim_{x \to +\infty} F(x)$

$$\forall x \ge 2, \ F(x) \ge F(2) + \frac{x^2}{2} - x.$$

Par passage à la limite, $\lim_{x \to +\infty} F(x) \ge \lim_{x \to +\infty} \left(F(2) + \frac{x^2}{2} - x \right)$.

Or
$$\lim_{x \to +\infty} \left(F(2) + \frac{x^2}{2} - x \right) = +\infty$$
. On en déduit que $\lim_{x \to +\infty} F(x) = +\infty$.

 $\underline{\text{Calcul de } \lim_{x \to +\infty} \frac{F(x)}{x}}.$

$$\forall x \ge 2, \ F(x) \ge F(2) + \frac{x^2}{2} - x.$$

Alors:
$$\forall x \ge 2$$
, $\frac{F(x)}{x} \ge \frac{1}{x} \left(F(2) + \frac{x^2}{2} - x \right)$.

Par passage à la limite, $\lim_{x\to +\infty} \frac{F(x)}{x} \ge \lim_{x\to +\infty} \frac{1}{x} \left(F(2) + \frac{x^2}{2} - x\right)$.

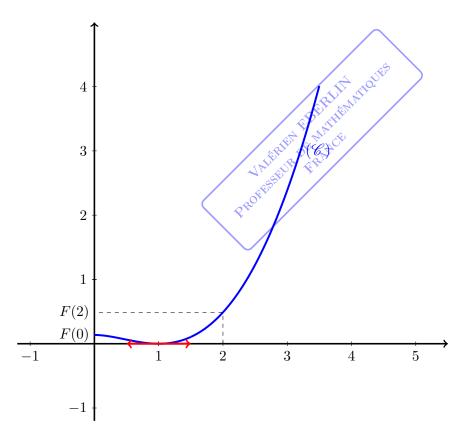
Or
$$\lim_{x \to +\infty} \frac{1}{x} \left(F(2) + \frac{x^2}{2} - x \right) = +\infty$$
. On en déduit que $\lim_{x \to +\infty} \frac{F(x)}{x} = +\infty$.

La courbe (\mathscr{C}) admet une branche parabolique de direction (Oy) en $+\infty$.

c.

•						
	x	0		1		$+\infty$
	F'(x)	0	_	0	+	
	F(x)	F(0)		0	A talifis	+∞
				O THE REPORT OF THE PARTY.	S. Maria	

d.



- **a.** $F(n+1)-F(n) = \int_{1}^{n+1} f(t) dt \int_{1}^{n} f(t) dt = \int_{n}^{1} f(t) dt + \int_{1}^{n+1} f(t) dt = \int_{n}^{n+1} f(t) dt$. D'où $u_n = F(n+1) F(n)$.
 - **b.** Erreur dans l'énoncé : l'encadrement $f(n) \leq u_n \leq f(n+1)$ n'est pas vérifié pour tout $n \in \mathbb{N}$ mais pour tout $n \in \mathbb{N}^*$. En effet, on n'a pas $f(0) \leq u_0 \leq f(1)$ puisque

$$f(0) = 0$$
; $f(1) = 0$ et $u_0 = \int_0^1 f(t) dt = -\int_1^0 f(t) dt = -F(0) \neq 0$

Montrons d'abord que f est croissante sur [n, n+1] pour tout $n \in \mathbb{N}^*$ Soit $n \in \mathbb{N}^*$.

$$\forall x \in [n, n+1], \quad f'(x) = \ln(x+1) + \frac{x-1}{x+1} > 0.$$

On en déduit que f est strictement croissante sur [n, n+1].

Montrons que $f(n) \leq u_n \leq f(n+1)$ pour tout $n \in \mathbb{N}^*$

Soit $n \in \mathbb{N}^*$.

F est continue et dérivable sur [n, n+1].

De plus, $F'(n) \leq F'(x) \leq F'(n+1)$ pour tout $x \in [n, n+1]$ car F' est croissante.

Or F' = f. D'où $f(n) \le F'(x) \le f(n+1)$ pour tout $x \in [n; n+1]$.

D'après le théorème de l'inégalité des accroissements finis, on a :

 $\forall x \in [n; n+1], \ \forall y \in [n; n+1] \ \text{tels que } x \leq y, \ f(n)(y-x) \leq F(y) - F(x) \leq f(n+1)(y-x)$

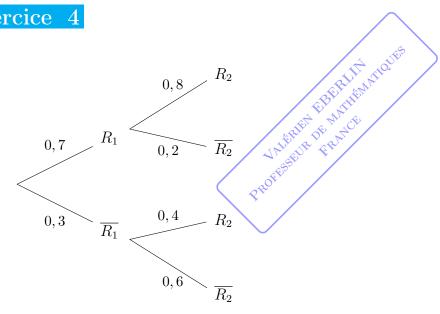
Ainsi, on peut appliquer l'inégalité précèdente en x=n et y=n+1.

On a alors:

$$f(n)\Big((n+1)-n\Big) \le F(n+1) - F(n) \le f(n+1)\Big((n+1)-n\Big).$$

D'où $f(n) \le u_n \le f(n+1)$.

Exercice 4



- $(R_1 \cap R_2) = 0,7 \times 0,8 = 0,56.$
- $(R_2) = 0,7 \times 0,8 + 0,3 \times 0,4 = 0,68.$
- 4 $p(A) = 0, 7 \times 0, 2 + 0, 3 \times 0, 4 = 0, 26.$

