Correction bac 2016 - Série C

ROFESSEUR DE MARKETANTER

Exercice

1 L'algorithme d'Euclide donne :

$$3024 = 2688 \times 1 + \boxed{336}$$

$$2688 = 336 \times 8 + 0$$

Le PGCD étant le dernier reste non nul est donc égal à 336.

Comme PGCD (2688; 3024) = 336, alors il existe des couples (u, v) dans $\mathbb{Z} \times \mathbb{Z}$ tels que $2688 \, u + 3024 \, v = 336$.

En multipliant membre à membre l'égalité précédente par -10, on a :

2688(-10u) + 3024(-10v) = -3360. On en déduit que les couples (-10u, -10v) sont des solutions de l'équation (E).

Donc l'équation (E) admet des solutions dans $\mathbb{Z} \times \mathbb{Z}$.

2 $2688x + 3024y = -3360 \iff \frac{2688}{336}x + \frac{3024}{336}y = -\frac{3360}{336} \iff 8x + 9y = -10.$

On en déduit que les équations (E) et (E_1) sont équivalentes.

3 a.

$$8x + 9y = -10 \iff 8x + 10 = 9(-y), \text{ avec } y \in \mathbb{Z}$$

 $\iff 8x + 10 \text{ est un multiple de } 9$
 $\iff 8x + 10 \equiv 0 [9]$
 $\iff 8x \equiv -10 [9]$

D'où les équations (E_1) et (E_2) sont équivalentes.

b. 1 est une solution particulière de l'équation (E_2) : $8x \equiv -10$ [9]. En effet, $8 \times 1 = -10 + 9 \times 2 \equiv -10$ [9].

Soit x une solution de l'équation (E_2) ,

$$\begin{cases} 8x \equiv -10 \, [9] \\ 8 \times 1 \equiv -10 \, [9] \end{cases} \iff 8x \equiv 8 \times 1 \, [9] \iff 8(x-1) \equiv 0 \, [9] \iff 9 \text{ divise } 8(x-1).$$

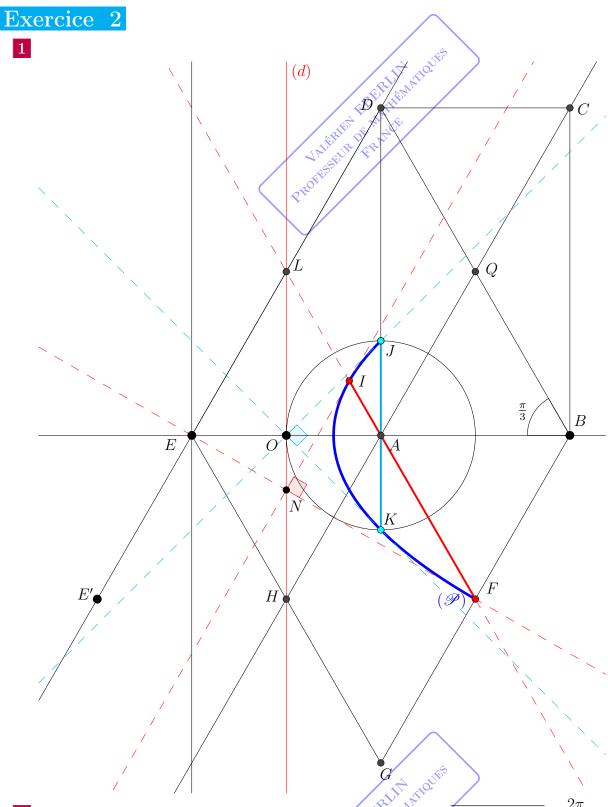
Comme 9 est premier avec 8, alors d'après le théorème de Gauss, 9 divise x-1.

Il existe donc un entier $k \in \mathbb{Z}$ tel que x-1=9k. D'où x=1+9k.

Les solutions de l'équation (E_2) sont l'ensemble $\{1 + 9k : k \in \mathbb{Z}\}.$

c. En remplaçant x par 1+9k dans l'équation 8x+9y=-10, on obtient : y=-2-8k. Les solutions de l'équation (E_1) sont l'ensemble $S=\{(1+9k\,;\, -2-8k)\,;\, k\in\mathbb{Z}\}.$

Les équations (E) et (E_1) étant équivalentes, on en déduit que S est également l'ensemble des solutions de l'équation (E)



- 2 $g = S_{(AB)} \circ S_{(BD)}$ est la rotation de centre B et d'angle $2 \times ((BD), (BA)) = \frac{2\pi}{3} [2\pi]$
- 3 Comme g est la composée d'une symétrie axiale et d'une rotation dont le centre n'appartient pas à l'axe de la symétrie, alors g est une symétrie glissée.
- **a.** Les transformations f et $t_{\overrightarrow{BF}} \circ S_{(AC)}$ ne sont pas égales En effet, soit Q, le centre du rectangle ABCD. $f(Q) = S_{(AD)} \circ S_{(AB)} \circ S_{(BD)}(Q) = S_{(AD)} \circ S_{(AB)}(Q) = S_{(AD)}(F) = H.$

Mais
$$t_{\overrightarrow{BF}} \circ S_{(AC)}(Q) = t_{\overrightarrow{BF}}(Q) = A$$
.
D'où $f \neq t_{\overrightarrow{BF}} \circ S_{(AC)}$.

D'où
$$f \neq t_{\overrightarrow{BF}} \circ S_{(AC)}$$
.

Montrons plutôt que $S_{(AD)} \circ R = t_{\overrightarrow{BF}} \circ S_{(AC)}$.

Première solution
$$S_{(AD)} \circ R = S_{(AD)} \circ R$$

$$= S_{(AD)} \circ S_{(BC)} \circ S_{(BC)}$$

$$= t_{\overrightarrow{BE}} \circ S_{(BC)}$$

$$= t_{\overrightarrow{BF}} \circ t_{\overrightarrow{FE}} \circ S_{(BC)}$$

$$= t_{\overrightarrow{BF}} \circ \underbrace{S_{(AC)} \circ S_{(BC)}}_{t_{\overrightarrow{FE}}} \circ S_{(BC)}$$

$$= t_{\overrightarrow{BF}} \circ S_{(AC)} \circ S_{(BC)} \circ S_{(BC)}$$

$$= t_{\overrightarrow{BF}} \circ S_{(AC)} \circ S_{(BC)} \circ S_{(BC)}$$

Deuxième solution

 $S_{(AD)} \circ R$ est la composée d'une symétrie axiale et d'une rotation dont le centre n'appartient pas à l'axe de symétrie. C'est donc une symétrie glissée.

Posons $u = S_{(AD)} \circ R$.

On a:
$$u(B) = S_{(AD)} \circ R(B) = S_{(AD)}(B) = E$$
 et $u(E) = S_{(AD)} \circ R(E) = S_{(AD)}(G) = G$.

D'où $u \circ u(B) = G$.

On en déduit que le vecteur de u est $\frac{1}{2}\overrightarrow{BG} = \overrightarrow{BF}$.

De plus, comme u(B) = E, alors l'axe de u est la droite dirigée par \overrightarrow{BF} passant par le milieu de [BE]. C'est par conséquent la droite (AC).

D'où $S_{(AD)} \circ R = t_{\overrightarrow{BF}} \circ S_{(AC)}$.

- **b.** L'axe (AC) étant dirigé par \overrightarrow{BF} , $S_{(AD)} \circ R_{(B,\frac{\pi}{3})}$ est une symétrie glissée de vecteur \overrightarrow{BF} et d'axe (AC).
- 5 La tangente et la normale à la parabole (\mathscr{P}) en F, coupent l'axe focal en deux points E et B. Donc le foyer de la parabole (\mathscr{P}) est le milieu de [EB]. D'où A est le foyer de (\mathscr{P}).
- **6** H est le symétrique du foyer A de la parabole (\mathscr{P}) par rapport à la tangente (EF) à (\mathscr{P}) . On en déduit que H est un point de la directrice (d).

D'où (d) est la perpendiculaire à l'axe focal (EB) passant par H. C'est par conséquent la droite (HL).

7 Les tangentes en les deux extrémités d'une corde focale d'une parabole sont sécantes en un point de la directrice et sont perpendiculaires.

Construction du point I

Soit N le point d'intersection de la tangente (FE) et de la directrice (d).

Le point I de (\mathscr{P}) est le point d'intersection de la demi-droite [FA) et de la perpendiculaire à la droite (EF) en N.

8 Soit O le point d'intersection de l'axe focal (EB) et de la directrice (d). J et K sont symétriques par rapport à (EB) et les tangentes en J et en K à (\mathcal{P}) sont sécantes en O et sont perpendiculaires.

Constructions de J et K

Les points J et K sont donc les points d'intersection de la droite (AD) et du cercle de centre A et de rayon AO.

9 Voir figure ci-dessus.

a.

points
$$J$$
 et K sont donc les points d'intersection de la dre A et de rayon AO .

figure ci-dessus.

$$f = S_{(AD)} \circ S_{(AB)} \circ S_{(BD)} = S_{(AD)} \circ g_{R}$$

$$= S_{(AD)} \circ R \circ R$$

$$= t_{\overrightarrow{BF}} \circ S_{(AC)} \circ R$$

D'où $f(A) = t_{\overrightarrow{BF}} \circ S_{(AC)} \circ R(A)$

D'où
$$f(A) = t_{\overrightarrow{BF}} \circ S_{(AC)} \circ R(A)$$

= $t_{\overrightarrow{BF}} \circ S_{(AC)}(F)$
= $t_{\overrightarrow{BF}}(E)$

Comme A est le foyer de la parabole (\mathcal{P}) , alors le foyer de la parabole (\mathcal{P}') est le point E' tel que BFE'E soit un parallélogramme.

b.

$$f(A) = E' \in (ED).$$

$$f(B) = t_{\overrightarrow{BF}} \circ S_{(AC)} \circ R(B) = t_{\overrightarrow{BF}} \circ S_{(AC)}(B) = t_{\overrightarrow{BF}}(L) = E.$$

Comme (AB) est l'axe focal (\mathcal{P}) , alors (ED) est le foyer de la parabole (\mathcal{P}') .

Exercice 3

1 L'équation caractéristique associée à l'équation différentielle y'' + 2y' + 2y = 0 est : $r^2 + 2r + 2 = 0$. Elle admet deux racines distinctes : $r_1 = -1 - i$ et $r_2 = -1 + i$.

On en déduit que la solution générale est : $y(x) = e^{-x}(c_1 \cos x + c_2 \sin x)$ où c_1 , c_2 sont des constantes réelles quelconques.

La solution particulière f est de la forme $f(x) = e^{-x}(c_1 \cos x + c_2 \sin x)$ avec $f(\frac{\pi}{2}) = e^{-\frac{\pi}{2}}$

$$\begin{cases} f(\frac{\pi}{2}) = e^{-\frac{\pi}{2}} \\ f'(\frac{\pi}{2}) = -e^{-\frac{\pi}{2}} \end{cases} \iff \begin{cases} c_2 = 1 \\ c_1 + c_2 = 1 \end{cases} \iff \begin{cases} c_2 = 1 \\ c_1 = 0 \end{cases}$$

f est la fonction définie sur \mathbb{R} par : $f(x) = e^{-x} \sin x$.

2

F est une primitive de f si : $\forall x \in \mathbb{R}, F'(x) = f(x)$,

On en déduit que : $\forall x \in \mathbb{R}$, $(-A + B)\cos x + (-A - B)\sin x = \sin x$.

D'où
$$A = B = -\frac{1}{2}$$
.

Par identification, -A+B=0 et -A+B=1. D'où $A=B=-\frac{1}{2}$. F est la fonction définie sur \mathbb{R} par $F(x)=-\frac{\mathrm{e}^{-x}(\cos x+\sin x)}{2}$.

$$\mathbf{b.} \int_{n\pi}^{(n+1)\pi} f(x) \, dx = \left[-\frac{e^{-x}(\cos x + \sin x)}{2} \right]_{n\pi}^{(n+1)\pi} = \frac{e^{-\pi} + 1}{2} \left(-e^{-\pi} \right)^{n}.$$

$$\mathbf{a.} \ \forall n \in \mathbb{N}, \ \frac{v_{n+1}}{v_n} = \frac{\frac{e^{-\pi} + 1}{2} \left(-e^{-\pi} \right)^{n+1}}{\frac{e^{-\pi} + 1}{2} \left(-e^{-\pi} \right)^{n}} = -e^{-\pi}.$$

3 **a.**
$$\forall n \in \mathbb{N}, \quad \frac{v_{n+1}}{v_n} = \frac{\frac{e^{-\pi}+1}{2} \left(-e^{-\pi}\right)^{n+1}}{\frac{e^{-\pi}+1}{2} \left(-e^{-\pi}\right)^n} = -e^{-\pi}$$

$$(v_n)$$
 est une suite géométrique de raison $-e^{-\pi}$ et de premier terme $v_0 = \frac{e^{-\pi} + 1}{2}$.
b. $S_n = v_0 + v_1 + \dots + v_n = \frac{e^{-\pi} + 1}{2} (1 + (-e^{-\pi})^n) + \dots + (-e^{-\pi})^n) = \frac{1}{2} (1 - (-e^{-\pi})^{n+1})$.
Comme $|-e^{-\pi}| = e^{-\pi} < 1$ alors $\lim_{n \to +\infty} (-e^{-\pi})^{n+1} = 0$. D'où $\lim_{n \to +\infty} S_n = \frac{1}{2}$.

Exercice 4

1 Tableau linéaire associé :

X	1	1	1	1	2	2	2	2	2	2
Y	-1	-1	2	3	-1	-1	2	2	2	3

Nous noterons $(x_i, n_{i\bullet})$, les couples qui définissent la distribution marginale de la variable X, et $(y_i, n_{\bullet i})$ les couples qui définissent la distribution marginale de la variable Y.

Dans ce cas, on a : $\sum_{i} n_{i \bullet} = \sum_{i} n_{\bullet j}$ que l'on pose égal à N.

Série marginale de X

X	1	2
n_{iullet}	4	6

Série marginale de Y

Y	-1	2	3
$n_{ullet i}$	4	4	2

$$V(X) = \frac{1}{N} \sum_{i=1}^{2} n_{i \bullet} x_{i}^{2} - \overline{X}^{2} = \frac{1}{10} \left[4 \times 1^{2} + 6 \times 2^{2} \right] - 1, 6^{2} = 0, 24.$$

$$V(Y) = \frac{1}{N} \sum_{j=1}^{3} n_{\bullet j} y_j^2 - \overline{Y}^2 = \frac{1}{10} \left[4 \times (-1)^2 + 4 \times 2^2 + 2 \times 3^2 \right] - 1^2 = 2, 8.$$

$$Cov(X,Y) = \frac{1}{N} \sum_{i=1}^{2} \sum_{j=1}^{3} n_{ij} x_i y_j - \overline{X}.\overline{Y}$$

$$= \frac{1}{10} (2 \times (-1) + 1 \times 2 + 1 \times 3 + 2 \times (-2) + 3 \times 4 + 1 \times 6) - 1, 6 \times 1$$

$$= 0, 1$$

D'où le coefficient de corrélation entre X et Y :

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}} = \frac{0,1}{\sqrt{0,24} \times \sqrt{2,8}} = 0,1219$$

3 D'après 1. et sachant que $\overline{X} = 1, 6$ et $\overline{Y} = 1$, les vecteurs centrés ont pour coordonnées : $X - \overline{X} = (-0, 6; -0, 6; -0, 6; -0, 6; 0, 4;$ $Y - \overline{Y} = (-2; -2; 1; 2; -2; -2; 1; 1; 1; 2).$ Le cosinus de l'angle formé par les vecteurs centrés $X - \overline{X}$ et $Y - \overline{Y}$ est donné par la

D'où cet angle vaut : $\left((X-\overline{X}),(Y-\overline{Y})\right)=\rho_{X,Y}$. $\left((X-\overline{X}),(Y-\overline{Y})\right)=\cos^{-1}(0,1219)\approx 83^{\circ}.$

