Correction bac 2015 - Série C

VARRETH PRANCE AND STREET

Exercice 1

- a. Les nombres 21 et 17 étant premièrs entre eux, PGCD (21; 17) = 1. D'après le théorème de Bezout, il existe $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ tel que $21x_0 + 17y_0 = 1$. En multipliant membre à membre l'égalité précédente par 4, on a : $21.(4x_0) - 17.(-4y_0) = 4$ On en déduit que $(4x_0, -4y_0) \in \mathbb{Z} \times \mathbb{Z}$ est alors solution de l'équation (E). Donc l'équation (E) admet au moins une solution dans $\mathbb{Z} \times \mathbb{Z}$.
 - **b.** On a : $21x 17y = 4 \iff 21x 4 = 17y \text{ avec } y \text{ entier}$ $\iff 21x 4 \text{ est un multiple de } 17$ $\iff 21x 4 \equiv 0 [17]$ $\iff 21x \equiv 4 [17]$

Les équation (E) et (E') sont équivalentes.

a. L'algorithme d'Euclide appliqué à 21 et 17 donne : $21 = 17 \times 1 + 4$ $17 = 4 \times 4 + 1$

En remontant l'algorithme d'Euclide, on obtient :

$$1 = 17 - 4 \times 4$$

$$1 = 17 - (21 - 17 \times 1) \times 4$$

$$1 = 17 - 21 \times 4 + 17 \times 4$$

$$1 = 17 \times 5 - 21 \times 4$$

On en déduit que $21 \times (-4) = 1 + 17 \times (-5)$ et par conséquent : $21 \times (-4) \equiv 1$ [17]. Donc l'inverse de 21 modulo 17 est -4.

b. Comme $21 \times (-4) \equiv 1$ [17], on en déduit que $21 \times (-16) \equiv 4$ [17]. Donc -16 est une solution particulière de l'équation (E').

Soit x une solution de l'équation (E'),

$$\begin{cases} 21x \equiv 4 \, [17] \\ 21 \times (-16) \equiv 4 \, [17] \end{cases} \iff 21x \equiv 21 \times (-16) \, [17] \iff 21(x+16) \equiv 0 \, [17]$$

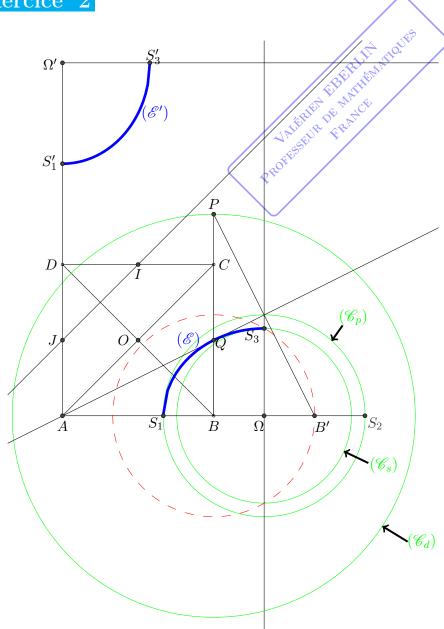
Comme 17 est premier avec 21, d'après le théorème de Gauss, 17 divise x+16. Il existe donc un entier $k \in \mathbb{Z}$ tel que x+16=17k.

D'où
$$x = -16 + 17k = 1 + 17(k - 1)$$

Les solutions de l'équation (E') sont l'ensemble $\{1 + 17k ; k \in \mathbb{Z}\}.$

En remplaçant x par 1+17k dans l'équation (E) : 21x-17y=4, on obtient : y=1+21k. Les solutions de l'équation (E) sont l'ensemble : $\{(1+17k; 1+21k); k \in \mathbb{Z}\}$.

Exercice 2



- 2 L'axe focal est la droite perpendiculaire à la directrice (AD) passant par le foyer B. C'est par conséquent la droite (AB).
- 3 a. Les points S_1 et S_2 à déterminer sont les sommets de l'ellipse.

Soit S un sommet de l'ellipse (\mathscr{E}) d'excentricité $\frac{1}{2}$.

$$\frac{SB}{SA} = \frac{1}{2} \iff 4SB^2 - SA^2 = 0 \iff (2\overrightarrow{SB} - \overrightarrow{SA}) \cdot (2\overrightarrow{SB} + \overrightarrow{SA}) = 0.$$

Comme les points A, B et S sont alignés, alors $2\overrightarrow{SB} + \overrightarrow{SA} = \overrightarrow{0}$ ou $2\overrightarrow{SB} - \overrightarrow{SA} = \overrightarrow{0}$.

Déterminons S tel que $2\overrightarrow{SB} + \overrightarrow{SA} = \overrightarrow{0}$

$$\frac{\overrightarrow{SB} = -\overrightarrow{SA} \iff 2\overrightarrow{SB} = -\overrightarrow{SB} - \overrightarrow{BA} \iff \overrightarrow{BS} = \frac{1}{3}\overrightarrow{BA}.$$

Le premier sommet S_1 de l'ellipse (E) vérifie $\overrightarrow{BS_1} = \frac{1}{3}\overrightarrow{BA}$.

Déterminons S tel que $2\overrightarrow{SB} - \overrightarrow{SA} = \overrightarrow{0}$

$$2\overrightarrow{SB} = \overrightarrow{SA} \iff 2\overrightarrow{SB} = \overrightarrow{SB} + \overrightarrow{BA} \iff \overrightarrow{BS} = -\overrightarrow{BA}$$

Le second sommet S_2 de l'ellipse (\mathscr{E}) vérifie $\overrightarrow{BS_2} = -\overrightarrow{BA}$

b. Voir figure.

À partir des sommets S_1 et S_2 , on construit le centre Ω de l'ellipse, milieu de $[S_1S_2]$ et on construit le second foyer B', symétrique de B par rapport à Ω .

- 4 Le cercle principal (\mathscr{C}_p) de (\mathscr{E}) est le cercle de centre Ω et de rayon, le demi-grand axe ΩS_1 .
- 5 Soit S_3 le point d'intersection de l'axe non focal et du cercle de centre B et de rayon, le demi-grand axe ΩS_1 .

 S_3 vérifie : $\Omega S_1^2 = BS_3^2 = B\Omega^2 + \Omega S_3^2$. C'est donc un sommet de l'ellipse et ΩS_3 est le demi-petit axe.

Le cercle secondaire (\mathscr{C}_s) est le cercle de centre Ω et de rayon, le demi-petit axe ΩS_3 .

- 6 Le cercle directeur relatif au foyer B est le cercle de centre B et de rayon, le grand axe S_1S_2 .
- Soit P, le point d'intersection de la demi droite [BC) et du cercle directeur (\$\mathscr{C}_d\$).
 Le point de (\$\mathscr{E}\$) situé sur la demi-droite [BC) est le point d'intersection de la demi-droite [BC) et de la médiatrice de [B'P] où B' est le second foyer de (\$\mathscr{E}\$).
 En effet, notons Q ce point. Comme Q est sur la médiatrice de [PB'], alors QB' = QP.
 D'où QB' + QB = QP + QB = PB = 2\OmegaB. Ce qui prouve que le point Q appartient à l'ellipse (\$\mathscr{E}\$).
- 8 Voir figure ci-dessus.
- 9 a. On appelle symétrie glissée, toute transformation qui peut s'écrire comme la composée commutative d'une translation et d'une réflexion d'axe dirigé par le vecteur de la translation.
 - **b.** Comme f est la composée d'une symétrie axiale et d'une translation dont le vecteur n'est pas normal à l'axe de la symétrie, alors f une symétrie glissée.

Vecteur de la symétrie glissée f

$$\overline{f(A)} = S_{(AC)} \circ t_{\overrightarrow{DC}}(A) = S_{(AC)}(B) = D.$$

$$f(D) = S_{(AC)} \circ t_{\overrightarrow{DC}}(D) = S_{(AC)}(C) = C.$$

f est une symétrie glissée telle que $f \circ f(A) = C$. On en déduit que le vecteur de la symétrie glissée f est $\frac{1}{2}\overrightarrow{AC} = \overrightarrow{OC}$.

Axe de la symétrie glissée f

Comme f(A) = D, alors l'axe de la symétrie glissée f est la droite dirigée par \overrightarrow{OC} et passant le milieu de [AD]. C'est par conséquent la droite (JI).

c. Voir figure.

Exercice 3

1 Comme $f(\alpha) = 0$, alors $1 - \alpha \ln \alpha = 0$. On en déduit que $\alpha = e^{\frac{1}{\alpha}}$. D'où $\alpha = g(\alpha)$. α est donc solution de l'équation g(x) = x. 2 Notons \mathscr{P}_n , la propriété : $u_n \in I$.

Montrons par récurrence que : $\forall n \in \mathbb{N}, \mathscr{P}_n$.

$$u_0 = 2 \in I$$
.

$$u_1 = e^{\frac{1}{2}} \in I.$$

On a :
$$\frac{3}{2} \le u_n \le 2$$
.

Par décroissance de la fonction inverse sur \mathbb{R}_+^* , on en déduit que : $\frac{1}{2} \leq \frac{1}{2} \leq \frac{2}{3}$.

Par croissance de la fonction exponentielle, on en déduit que : $e^{\frac{1}{2}} \le e^{\frac{1}{u_n}} \le e^{\frac{2}{3}}$.

Or
$$e^{\frac{1}{2}} > \frac{3}{2}$$
 et $e^{\frac{2}{3}} < 2$. D'où $u_{n+1} = e^{\frac{1}{u_n}} \in I$.

La propriété \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}$.

3 g est continue et dérivable sur I.

De plus, $|g'(x)| \leq \frac{1}{2}$ pour tout $x \in I$.

D'après le théorème de l'inégalité des accroissements finis, on a :

$$\forall x \in I, \ \forall y \in I, \ |g(x) - g(y)| \le \frac{1}{2}|x - y|$$

Comme $\alpha \in I$, on peut appliquer l'inégalité précédente en x quelconque où $x \in I$ et en $y = \alpha$.

On a alors:

$$\forall x \in I, |g(x) - g(\alpha)| \le \frac{1}{2}|x - \alpha|$$

Or $g(\alpha) = \alpha$. Il en résulte que : $\forall x \in I, |g(x) - \alpha| \le \frac{1}{2}|x - \alpha|$.

On peut appliquer l'inégalité précédente en $x = u_n$ (car $u_n \in I$).

On a alors:

$$|g(u_n) - \alpha| \le \frac{1}{2}|u_n - \alpha|$$

Or $g(u_n) = u_{n+1}$. Il en résulte que $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|$ pour tout $n \in \mathbb{N}$.

b. Soit \mathscr{P}_n , la propriété : $|u_n - \alpha| \leq \left(\frac{1}{2}\right)^n$.

Montrons par récurrence que : $\forall n \in \mathbb{N}$, \mathscr{P}_n Initialisation

Comme $\frac{3}{2} \leq \alpha \leq 2$, alors $0 \leq 2 - \alpha \leq \frac{1}{2}$ donc $|u_0 - \alpha| = 2 - \alpha \leq \frac{1}{2} \leq \left(\frac{1}{2}\right)^0$.

La propriété \mathscr{P}_0 est vérifiée.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que : $|u_n - \alpha| \leq \left(\frac{1}{2}\right)^n$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $|u_{n+1} - \alpha| \leq \left(\frac{1}{2}\right)^{n+1}$.

D'après 4. a. $|u_{n+1}-\alpha| \leq \frac{1}{2}|u_n-\alpha|$, et par hypothèse de récurrence, $|u_n-\alpha| \leq \left(\frac{1}{2}\right)^n$.

Ainsi,
$$|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha| \le \frac{1}{2} \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{n+1}$$
.

Donc \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}$.

c. $\forall n \in \mathbb{N}, \quad 0 \leq |u_n - \alpha| \leq \left(\frac{1}{2}\right)^n$.

Par passage à la limite, $0 \leq \lim_{n \to +\infty} |u_n - \alpha| \leq \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$.

Par conséquent, $\lim_{n \to +\infty} |u_n - \alpha| = 0$ et donc $\lim_{n \to +\infty} u_n = \alpha$.

a. On cherche un entier $n_0 \in \mathbb{N}$ tel que $\left(\frac{1}{2}\right)^{n_0} \leq 10^{-1}$. 5

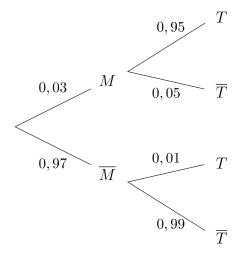
Par croissance de la fonction logarithme, on a : $n_0 \ln \frac{1}{2} \le -\ln 10$.

D'où
$$n_0 \ge \frac{\ln 10}{\ln 2} (\approx 3, 32).$$

On peut prendre $n_0 = 4$.

b. $u_1 = g(u_0) \approx 1,6487$; $u_2 = g(u_1) \approx 1,834$; $u_3 = g(u_2) \approx 1,725$; $u_4 = g(u_3) \approx 1,7855$. $u_4 \approx 1,786$ est une valeur approchée de α .

Exercice



- $p(M \cap T) = 0,03 \times 0,95 = 0,0285.$ $p(\overline{M} \cap \overline{T}) = 0,97 \times 0,99 = 0,9603.$
- 3 $p(T) = 0.03 \times 0.95 + 0.97 \times 0.01 = 0.0382.$ $p(\overline{T}) = 1 - p(T) = 0,9618.$
- FBERING TO STATE OF STREET **a.** $p(\overline{M}/T) = \frac{p(\overline{M} \cap T)}{p(T)} = \frac{0.97 \times 0.01}{0.0382} \approx 0.2539.$
 - **b.** $p(M/\overline{T}) = \frac{p(M \cap \overline{T})}{p(\overline{T})} = \frac{0.03 \times 0.05}{0.9618} \approx 0.0015.$