Correction bac 2014 - Série C

A Fight State of the state of t

Exercice

1 L'équation $(E): Z^2 - (2ie^{i\theta}\cos\theta)Z - e^{i2\theta} = 0$ admet pour discriminant réduit : $\Delta' = (ie^{i\theta}\cos\theta)^2 - 1 \times (-e^{2i\theta}) = e^{2i\theta}(-\cos^2\theta + 1) = (e^{i\theta}\sin\theta)^2.$

On en déduit que les racines de l'équation (E) sont alors :

$$Z_1 = \frac{ie^{i\theta}\cos\theta - e^{i\theta}\sin\theta}{1} = e^{i\theta}i(\cos\theta + i\sin\theta) = e^{i\theta}e^{i\frac{\pi}{2}}e^{i\theta} = e^{i(\frac{\pi}{2} + 2\theta)}.$$

$$Z_2 = \frac{ie^{i\theta}\cos\theta + e^{i\theta}\sin\theta}{1} = e^{i\theta}i(\cos\theta - i\sin\theta) = e^{i\theta}e^{i\frac{\pi}{2}}e^{-i\theta} = e^{i\frac{\pi}{2}}.$$

- **2** a. $arg\left(\frac{Z_B Z_0}{Z_A Z_0}\right) = arg\left(\frac{e^{i(\frac{\pi}{2} + 2\theta)}}{e^{i\frac{\pi}{2}}}\right) = arg(e^{i2\theta}) \equiv 2\theta \left[2\pi\right]$
 - **b.** Comme $\overrightarrow{(\overrightarrow{OA},\overrightarrow{OB})} \equiv arg\left(\frac{Z_B Z_0}{Z_A Z_0}\right)$ [2 π], alors $2\theta \equiv \frac{\pi}{2}$ [2 π]. D'où $\theta \equiv \frac{\pi}{4}$ [π].

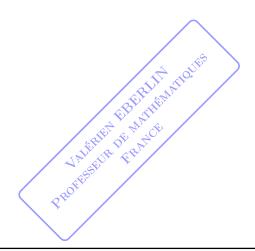
L'ensemble des valeurs de θ est $\left\{\frac{\pi}{4} + k\pi ; k \in \mathbb{Z}\right\}$.

C.
$$Z_A + Z_B = e^{i\frac{\pi}{2}} + e^{i(\frac{\pi}{2} + 2\theta)} = e^{i\frac{\pi}{2}} \left(1 + e^{i2\theta} \right) = e^{i\frac{\pi}{2}} \left(1 + \cos 2\theta + i \sin 2\theta \right)$$
$$= e^{i\frac{\pi}{2}} \left(2\cos^2 \theta + i 2\sin \theta \cos \theta \right)$$
$$= 2e^{i\frac{\pi}{2}} \cos \theta \left(\cos \theta + i \sin \theta \right)$$
$$= 2e^{i\frac{\pi}{2}} \cos \theta e^{i\theta}$$
$$= 2\cos \theta e^{i(\frac{\pi}{2} + \theta)}$$

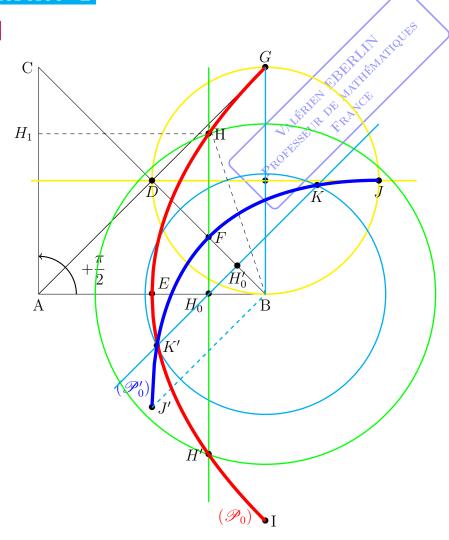
On a: $|Z_A + Z_B| = |2\cos\theta| = 2\cos\theta \text{ car } 0 \le \theta < \frac{\pi}{2}$.

On en déduit que $2\cos\theta \,e^{i(\frac{\pi}{2}+\theta)}$ est la forme exponentielle de Z_A+Z_B .

Donc la forme exponentielle de $\overline{Z_A + Z_B}$ est $2\cos\theta \, e^{-i(\frac{\pi}{2} + \theta)}$.



Exercice 2



- **a.** On appelle paramètre p d'une parabole, la distance du foyer de cette parabole à sa directrice.
 - **b.** AB étant la distance du foyer B à la directrice (AC), alors $\alpha = AB = 6$ cm.
- 3 a.
- B est le foyer de (\mathcal{P}) ;
- $G \in (\mathscr{P})$ car C est le projeté orthogonal de G sur la directrice (AC) et GB = GC.
- De plus, (AG) est la médiatrice de [BC].

Donc (AG) est la tangente à (\mathcal{P}) en G.

- b. Notons H_1 le projeté orthogonal de H sur la directrice (AC) et H_0 le milieu de [EB]. On a : $HH_1 = H_0A$. Or $HH_1 = HB$ car $H \in \mathscr{P}$). Donc $HB = H_0A$. On en déduit que H est l'un des points d'intersection de la médiatrice du segment [EB] et du cercle de centre B de rayon H_0A (voir la construction en vert ci-dessous).
- **c.** $E \in (\mathscr{P})$. Les points G et H ainsi que leurs symétriques I et H' par rapport à l'axe focal (AB) sont des points de (\mathscr{P}) . À partir de ces 5 points, on obtient une allure de l'arc (\mathscr{P}_0) .

- S est la similitude de centre B, de rapport $K = \frac{BA}{BD} = \frac{1}{\cos(\frac{\pi}{4})} = \sqrt{2}$ et d'angle $(\overrightarrow{BD}, \overrightarrow{BA}) \equiv \frac{\pi}{4} [2\pi].$
- Comme S(B) = B et S(J) = G, alors $BG = \sqrt{2}BJ$ et $(\overrightarrow{BJ}, \overrightarrow{BG}) = \frac{\pi}{4}[2\pi]$. On en déduit que le triangle BJG est rectangle isocèle en J. J est donc le point d'intersection du cercle de diamètre [BG] et de la médiatrice de [BG] tel que l'angle $(\overrightarrow{BJ}, \overrightarrow{BG})$ soit orienté positivement (voir construction en jaune).
- Pour construire l'arc (\mathscr{P}'_0) , on applique le même procédé que celui utilisé pour construire l'arc (\mathscr{P}_0) (voir 3.b.).

 Soit H'_0 , le milieu de [BF]. Les points d'intersections K et K' du cercle de centre B de rayon $[H'_0D]$ et de la médiatrice de [BF] appartiennent à (\mathscr{P}') .

 À l'aide des cinq points, K, K', F, J et J' où J' est le symétrique de J par rapport à l'axe focal (BD), on construit une allure de l'arc (\mathscr{P}'_0) .
- Toute similitude de rapport k multiplie l'aire de sa transformée par k^2 . Comme S est une similitude de rapport $\sqrt{2}$ et que $S((\mathscr{E}_0')) = (\mathscr{E}_0)$, alors $A_0 = (\sqrt{2})^2 A_0' = 2A_0'$
- 8 $S \circ S \circ S \circ S$ est la similitude de centre B, de rapport $(\sqrt{2})^4 = 4$. D'où $A = 4^2 A_0' = 16 \times \frac{1}{2} A_0 = 8A_0$

Exercice 3

- La fonction $x \mapsto e^{-x}$ est définie sur \mathbb{R} et la fonction $x \mapsto x^{n+1}$ est définie sur \mathbb{R} , alors la fonction $x \mapsto e^{-x} x^{n+1}$ est définie sur \mathbb{R} . D'où $E_{f_n} = \mathbb{R}$
- **a.** f est dérivable sur \mathbb{R} . $\forall x \in \mathbb{R}, \ f'_n(x) = (-e^{-x})x^{n+1} + e^{-x}(n+1)x^n = (-x+n+1)e^{-x}x^n$ L'entier n étant impair, x^n est de même signe que x. D'où le tableau de signes :

x	$-\infty$	0	n+1	$+\infty$
-x+n+1		+	0 -	
e^{-x}			+ 1 1115	
x^n	_	0	BERLIE HINE	
$f'_n(x)$	_	0	thirty to the production of	

b. n+1 étant pair, $\lim_{x\to -\infty} x^{n+1} = +\infty$. D'où $\lim_{x\to -\infty} e^{-x} x^{n+1} = +\infty$. $\lim_{x\to +\infty} e^{-x} x^{n+1} = 0$.

x	$-\infty$		0		n+1	$+\infty$
$f'_n(x)$		_	0	+	O THOUTES-	
$f_n(x)$	$+\infty$		0	/ 4	$\left(\frac{n+1}{e}\right)^{n+1}$	` 0

3 a.

Si l'on choisit
$$\begin{cases} u'(x) = e^{-x} \\ v(x) = x^{n+2} \end{cases}$$
 alors on peut prendre
$$\begin{cases} u(x) = -e^{-x} \\ v'(x) = (n+2)x^{n+1} \end{cases}$$

Il vient, en intégrant par parties :

$$I_{n+1,p} = \int_0^p e^{-x} x^{n+2} dx = \left[-e^{-x} x^{n+2} \right]_0^p + (n+2) \int_0^p e^{-x} x^{n+1} dx = -e^{-p} p^{n+2} + (n+2) I_{n,p}$$

Par passage à la limite,

$$\lim_{p \to +\infty} I_{n+1,p} = \underbrace{\lim_{p \to +\infty} -e^{-p} p^{n+2}}_{=0} + \lim_{p \to +\infty} (n+2) I_{n,p} = (n+2) \lim_{p \to +\infty} I_{n,p}$$

D'où
$$J_{n+1} = (n+2)J_n$$
.

b.
$$J_n = (n+1)J_{n-1} = (n+1) \times nJ_{n-2} = \cdots = (n+1) \times n \times \cdots \times 2 \times J_0 = (n+1)! J_0$$

Exercice 4

Pour tous nombres n et p de l'ensemble $\{1, 2, 3, 4\}$, X est la variable aléatoire qui à tout tirage (n, p) où $n \neq p$, associe |n - p|.

jeton 10	1	2	3	4	
1		1	2	3	
2	1		1	2	alil gratis
3	2	1		1	BUR DE BURTHER WHOUSE
4	3	2	1		SELIR FRE

x_i	1	2	3	\wedge
$p(X=x_i)$	$\frac{6}{12} = \frac{1}{2}$	$\frac{4}{12} = \frac{1}{3}$	$\frac{2}{12} = \frac{1}{6}$	J.J. TROUTES

$$E(X) = \sum_{i=1}^{3} x_i p(X = x_i) = 1 \times \frac{1}{2} + 2 \times \frac{1}{3} + 3 \times \frac{1}{6} = \frac{5}{3}$$

$$Var(X) = \sum_{i=1}^{3} x_i^2 p(X = x_i) - (E(X))^2 = 1 \times \frac{1}{2} + 4 \times \frac{1}{3} + 9 \times \frac{1}{6} - (\frac{5}{3})^2 = \frac{5}{9}$$

$$\sigma(X) = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}$$

