Correction bac 2013 Série C

Exercice 1

- VALERUEN EIGHE **1** En remplaçant z par -1 dans l'équation (E), on vérifie que : $(-1)^3 - (\frac{1}{2} + \frac{1}{2}i)(-1)^2 - (\frac{1}{2} + \frac{1}{2}i)(-1) + 1 = 0.$
- 2 Soit z_0 , une solution de (E). Le nombre z_0 est nécessaire non nul puisque 0 n'est pas une solution de (E).

$$\left(\frac{1}{z_0}\right)^3 - \left(\frac{1}{2} + \frac{1}{2}i\right)\left(\frac{1}{z_0}\right)^2 - \left(\frac{1}{2} + \frac{1}{2}i\right)\left(\frac{1}{z_0}\right) + 1 = \frac{1 - \left(\frac{1}{2} + \frac{1}{2}i\right)z_0 - \left(\frac{1}{2} + \frac{1}{2}i\right)z_0^2 + z_0^3}{z_0^3} = \frac{0}{z_0^3} = 0.$$

3 L'équation $(E'): z^2 - \left(\frac{3}{2} + \frac{1}{2}i\right)z + 1$ admet pour discriminant $\Delta = -2 + \frac{3}{2}i$.

Cherchons un nombre complexe u = x + iy tel que $u^2 = -2 + \frac{3}{2}i$.

Alors,
$$x^2 - y^2 + 2ixy = -2 + \frac{3}{2}i$$
.

Par identification des parties réelles et des parties imaginaires, $x^2 - y^2 = -2$ et $xy = \frac{3}{4}$.

D'autre part, comme $|u|^2 = |-2 + \frac{3}{2}i|$ alors $x^2 + y^2 = \frac{5}{2}$.

On obtient le système d'équations suivant :
$$\begin{cases} x^2 - y^2 = \frac{1}{2} \\ x^2 + y^2 = \frac{5}{2} \end{cases}$$
 (2)
$$xy = \frac{3}{4}$$
 (3)

En additionnant membre à membre l'équation (1) et (2), on obtient $x = -\frac{1}{2}$ ou $x = \frac{1}{2}$;

En multipliant l'équation (1) par -1, puis en ajoutant membre à membre la nouvelle équation obtenue et l'équation (2), on en déduit que $y = -\frac{3}{2}$ ou $y = \frac{3}{2}$.

L'équation (3) nous indique que x et y sont de même signe.

D'où
$$\Delta = \left(\frac{1}{2} + \frac{3}{2}i\right)^2$$
.

On en déduit que les racines de l'équation (E') sont : $z'_0 = 1 + i$ et $z''_0 = \frac{1}{2} - \frac{1}{2}i$.

4 En remarquant que

En remarquant que $(z+1)\left(z^2-\left(\frac{3}{2}+\frac{1}{2}\,i\right)z+1\right)=z^3-\left(\frac{1}{2}+\frac{1}{2}\,i\right)z^2-\left(\frac{1}{2}+\frac{1}{2}\,i\right)z+1\ , \ \text{on en déduit que}$

les solutions de l'équation (E) sont : $\left\{-1, 1+i, \frac{1}{2} - \frac{1}{2}i\right\}$

Exercice

1

			$\overline{}$	
Y X	-2	<u>-1</u>	aligo	
-1	3	BER ZERRE	1	
0	OFFE OF	MAN 3E	0	
2	TA 20	2	1	
(R	20,			

2

Nous noterons $(x_i, n_{i\bullet})$, les couples qui définissent la distribution marginale de la variable X, et $(y_j, n_{\bullet j})$ les couples qui définissent la distribution marginale de la variable Y.

Dans ce cas, on a : $\sum_{i} n_{i \bullet} = \sum_{i} n_{\bullet j}$ que l'on pose égal à N.

Série marginale de X

X	-2	-1	0
n_{iullet}	5	7	2

Série marginale de Y

Y	-1	0	2
$n_{\bullet j}$	6	3	5

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i} = \frac{5 \times (-2) + 7 \times (-1) + 2 \times 0}{14} = -\frac{17}{14}$$

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{3} n_{\bullet j} y_{j} = \frac{6 \times (-1) + 3 \times 0 + 5 \times 2}{14} = \frac{2}{7}$$

D'où le point moyen $G\left(-\frac{17}{14}; \frac{2}{7}\right)$.

3
$$V(X) = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i}^{2} - \overline{X}^{2} = \frac{1}{14} \left[5 \times (-2)^{2} + 7 \times (-1)^{2} + 2 \times 0^{2} \right] - \left(-\frac{17}{14} \right)^{2} = \frac{89}{196}.$$

$$V(Y) = \frac{1}{N} \sum_{i=1}^{3} n_{\bullet j} y_{j}^{2} - \overline{Y}^{2} = \frac{1}{14} \left[6 \times (-1)^{2} + 3 \times 0^{2} + 5 \times 2^{2} \right] - \left(\frac{2}{7} \right)^{2} = \frac{87}{49}.$$

4

$$\operatorname{Cov}(X,Y) = \frac{1}{N} \sum_{i=1}^{3} \sum_{j=1}^{3} n_{ij} x_i y_j - \overline{X}.\overline{Y}$$

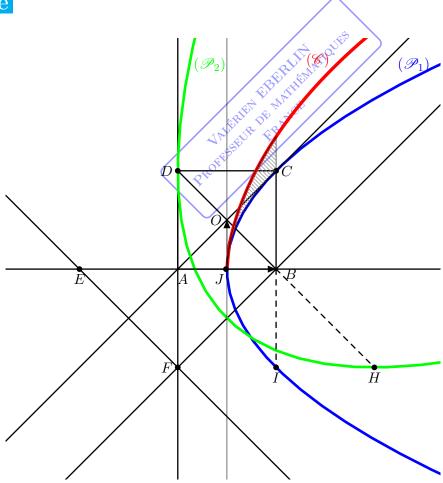
$$= \frac{1}{14} (3 \times 2 + 2 \times 1 + 2 \times (-4) + 2 \times (-2)) - \left(-\frac{17}{14}\right) \times \frac{2}{7}.$$

$$= \frac{3}{49}$$
Le coefficient de corrélation linéaire entre X et Y est :

5 Le coefficient de corrélation linéaire entre X et Y est :

D'où
$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{V}(X)}\sqrt{\operatorname{V}(Y)}} = 0,068.$$

Problème



- 1 $C \in \mathscr{P}_1$ et D est le projeté orthogonal de C sur la directrice (AD). Et (AC) qui est la tangente en C à (\mathscr{P}_1) est également la médiatrice de [BD]. Donc B est le foyer de la parabole.
- 2 E est le symétrique du foyer B par rapport à la tangente (AD) à (\mathscr{P}_2) . On en déduit que E est un point de la directrice de (\mathscr{P}_2) . Or E est également le projeté orthogonal de $D \in (\mathscr{P}_2)$ sur (EF). Donc (EF) est la directrice de (\mathscr{P}_2) .
- B est le foyer de (\$\mathscr{P}_2\$).
 (EF) est la directrice de (\$\mathscr{P}_2\$).
 On en déduit que (BF) qui est la perpendiculaire à (EF) passant par B est son axe focal.
 C'est par conséquent son axe de symétrie.
 D'où H est le symétrique de D par rapport à (BF).
- [DH] est un segment passant par le foyer B et dont les extrémités appartiennent à (\mathcal{P}_2) . C'est une corde focale de (\mathcal{P}_2) .
- B est le foyer de (\mathcal{P}_1) . (AD) est la directrice de (\mathcal{P}_1) .

 On en déduit que (BE) qui est la perpendiculaire à (AD) passant par B est son axe focal.

 C'est par conséquent son axe de symétrie.

 Comme $C \in (\mathcal{P}_1)$, alors I symétrique de C par rapport à (BE), appartient à (\mathcal{P}_1) .

- 6 Voir figure.
- $7 \quad \theta = \overrightarrow{(\overrightarrow{BF}, \overrightarrow{BA})} \equiv -\frac{\pi}{4} \left[2\pi \right]$
- $8 \quad k = \frac{BA}{RF} = \frac{\sqrt{2}}{2}.$
- EBERLIT ATTOMES **9** [CI] corde focale de (\mathscr{P}_1) est perpendiculaire à son axe focal. [DH] corde focale de (\mathscr{P}_2) est perpendiculaire à son axe focal.

On en déduit que S([DH]) = [CI].

Or la similitude conserve les milieux. Comme B est le milieu de [DH], alors S(B) est le milieu de [CI].

D'où S(B) = B.

Donc B est le centre de la similitude S.

10 La fonction f est définie sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* .

$$\forall x \in \mathbb{R}_+^*, \quad f'(x) = \frac{1}{\sqrt{x}} + \frac{1}{x+1}.$$

 $\frac{\text{Signe de }f'}{\forall\,x\in\mathbb{R}_+^*,}\,f'(x)>0.$

Tableau de variation

$$\lim_{x \to +\infty} f(x) = +\infty.$$

x	0 +0	∞
f'(x)	+	
f(x)	0 +0	∞

 $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{2}{\sqrt{x}} + \frac{\ln(x+1)}{x} \right) = 0.$

La courbe (\mathscr{C}) admet une branche parabolique de direction JB.

- 12 Voir figure (en rouge).
- 13 p étant la distance du foyer à la directrice, on a : p = AB = 2. L'équation cartésienne de la parabole (\mathcal{P}_1) est alors $y^2 = 2px = 4x$. On en déduit que (\mathscr{P}_1) est la réunion de deux courbes symétriques par rapport à (JB):
 - la courbe d'équation $y_1(x) = 2\sqrt{x}$
 - la courbe d'équation $y_2(x) = -2\sqrt{x}$.

D'où l'aire de la portion :
$$\int_0^1 (f(x) - y_1(x)) \, dx = \int_0^1 ((2\sqrt{x} + \ln(x+1) + 2\sqrt{x}) \, dx = \left[(x+1) \ln(x+1) - x \right]_0^1 = 2 \ln 2 - 1$$