Correction bac 2012 Série C

The De Martin Manda of the Or of the Oracle of the Oracle

Exercice

Exercice 1
Soit
$$z = ib$$
 où $b \in \mathbb{R}$, une solution de l'équation $Z^4 - \sqrt{2}Z^3 - 4\sqrt{2}Z - 16 = 0$.
$$(ib)^4 - \sqrt{2}(ib)^3 - 4\sqrt{2}(ib) - 16 = 0 \iff b^4 - 16 + i\sqrt{2}b(b^2 - 4) = 0$$

$$\iff b = 2 \text{ ou } b = -2$$

Les solutions imaginaires pures sont $z_0 = 2i$ et $z_1 = -2i$.

L'équation $Z^4 - \sqrt{2}Z^3 - 4\sqrt{2}Z - 16$ peut alors se mettre sous la forme :

$$Z^{4} - \sqrt{2}Z^{3} - 4\sqrt{2}Z - 16 = (Z - 2i)(Z + 2i)(Z^{2} + cZ + d)$$
$$= (Z^{2} + 4)(Z^{2} + cZ + d)$$

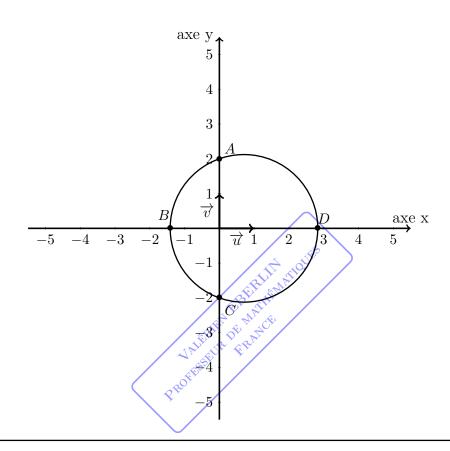
Le terme de degré 0 du second membre est 4d. On en déduit que 4d = -16. D'où d = -4. Le terme de degré 1 du second membre est 4c. On en déduit que $4c = -4\sqrt{2}$. D'où $c = -\sqrt{2}$.

Il vient que :
$$Z^4 - \sqrt{2}Z^3 - 4\sqrt{2}Z - 16 = (Z^2 + 4)(Z^2 - \sqrt{2}Z - 4)$$
.

L'équation $Z^2 - \sqrt{2}Z - 4 = 0$, de discriminant $\Delta = (-\sqrt{2})^2 - 4(-4) = 18$ admet deux racines $z_2 = 2\sqrt{2}$ et $z_3 = -\sqrt{2}$.

Donc les solutions de l'équation $Z^4 - \sqrt{2}Z^3 - 4\sqrt{2}Z - 16 = 0$ sont : $z_0 = 2i$, $z_1 = -2i$, $z_2 = 2\sqrt{2} \text{ et } z_3 = -\sqrt{2}.$

a.



b.

Les points A, B, C et D sont cocycliques $\iff (\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{DB}, \overrightarrow{DC}) \lceil \pi \rceil$

Les points
$$A, B, C$$
 et D sont cocycliques $\iff \overrightarrow{(AB, AC)} \equiv \overrightarrow{(DB, DC)} [\pi \underbrace{z_C - z_A}_{z_B - z_A} \div \underbrace{z_C - z_D}_{z_B - z_A} \div \underbrace{z_C - z_D}_{z_B - z_D} \in \mathbb{R}$
$$\underbrace{z_C - z_A}_{z_B - z_A} \div \underbrace{z_C - z_D}_{z_B - z_D} = \underbrace{-4i}_{-\sqrt{2} - 2i} \div \underbrace{-2i - 2\sqrt{2}}_{-\sqrt{2} - 2i} \div \underbrace{3\sqrt{3}}_{-\sqrt{2} - 2i}$$
 Donc les points A, B, C et D appartiennent à un même cercle (\mathscr{C}) .

Donc les points A, B, C et D appartiennent à un même cercle (\mathscr{C}) .

Le cercle (\mathscr{C}) a pour centre, le point d'affixe $\frac{z_B + z_D}{2} = \frac{\sqrt{2}}{2}$ et pour rayon $\frac{1}{2}|z_D - z_B| = \frac{3\sqrt{2}}{2}$.

Exercice

$$I_1 = \int_0^1 x e^{-\frac{x^2}{2}} dx = \left[-e^{-\frac{x^2}{2}} \right]_0^1 = -e^{-\frac{1}{2}} + 1$$

2 Soit $n \in \mathbb{N}^*$.

La fonction $x \longmapsto x^n e^{-\frac{x^2}{2}}$ est continue sur [0; 1].

De plus : $\forall x \in [0; 1], x^n e^{-\frac{x^2}{2}} > 0.$

Donc $I_n = \int_1^1 x^n e^{-\frac{x^2}{2}} dx \ge 0$ pour tout $n \in \mathbb{N}^*$.

3 Soit n un entier tel que n > 3.

$$I_n = \int_0^1 x^n e^{-\frac{x^2}{2}} dx = \int_0^1 x^{n-1} \cdot x e^{-\frac{x^2}{2}} dx$$

$$I_n = \int_0^1 x^n e^{-\frac{x^2}{2}} dx = \int_0^1 x^{n-1} \cdot x e^{-\frac{x^2}{2}} dx.$$
Si l'on choisit
$$\begin{cases} u = x^{n-1} \\ v' = x e^{-\frac{x^2}{2}} \end{cases}$$
 alors on peut prendre
$$\begin{cases} u' = (n-1)x^{n-2} \\ v = -e^{-\frac{x^2}{2}} \end{cases}$$

Il vient, en intégrant par parties

$$I_n = \left[-x^{n-1} e^{-\frac{x^2}{2}} \right]_0^1 + (n-1) \int_0^1 x^{n-2} e^{-\frac{x^2}{2}} dx = -e^{-\frac{1}{2}} + (n-1)I_{n-2}.$$

D'où : $I_n = -e^{-\frac{1}{2}} + (n-1)I_{n-2}$ pour tout entier n tel que $n \ge 3$.

4 Décroissance de la suite (I_n)

$$I_{n+1} - I_n = \int_0^1 x^{n+1} e^{-\frac{1}{2}} dx - \int_0^1 x^n e^{-\frac{x^2}{2}} dx = \int_0^1 x^n (x - 1) e^{-\frac{x^2}{2}} dx.$$

La fonction $x \mapsto x^n(x-1) e^{-\frac{x^2}{2}}$ est continue sur [0,1]

De plus, $\forall x \in [0; 1], \ x^n(x-1) e^{-\frac{x^2}{2}} \le 0.$

Donc
$$I_{n+1} - I_n = \int_0^1 x^n(x-1) e^{-\frac{x^2}{2}} dx \leq 0$$
 pour tout $n \in \mathbb{N}^*$.
La suite (I_n) est décroissante.

Convergence de la suite (I_n)

La suite (I_n) est décroissante d'après 4..

De plus, (I_n) est minorée par 0 d'après 2..

5 Soit $n \in \mathbb{N}^*$.

$$\forall x \in [0; 1], -\frac{x^2}{2} \le 0.$$

De plus,
$$(I_n)$$
 est minorée par 0 d'après $2..$
Donc la suite (I_n) converge vers une limite l .
Soit $n \in \mathbb{N}^*$.
 $\forall x \in [0;1], \quad -\frac{x^2}{2} \leq 0$.
Par croissance de la fonction exponentielle, $0 \leq e^{\frac{x^2}{2}} \leq e^0 = 1$.
On en déduit que : $0 \leq x^n e^{-\frac{x^2}{2}} \leq x^n$.
Par passage à l'intégrale, on a : $0 \leq \int_0^1 x^n e^{-\frac{x^2}{2}} dx \leq \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}$

D'où $0 \le I_n \le \frac{1}{n+1}$, pour tout $n \in \mathbb{N}^*$.

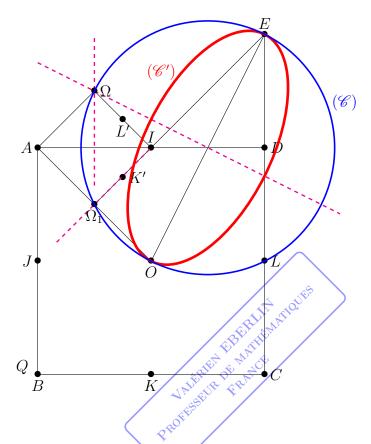
Calcul de *l*

$$\forall n \in \mathbb{N}^*, \quad 0 \le I_n \le \frac{1}{n+1}.$$

Par passage à la limite, on a $0 \le \lim_{n \to +\infty} I_n \le \lim_{n \to +\infty} \frac{1}{n+1} = 0.$

On en déduit que l=0.

Problème



1 $IE^2 = ID^2 + DE^2 = AI^2 + IO^2 = AO^2$. Donc IE = AO.

Comme IE = AO et $\overrightarrow{IE} \neq \overrightarrow{AO}$ alors il existe une unique rotation r, d'angle $\overrightarrow{(IE, AO)}$ qui transforme I en A et E en O.

Cet angle vaut $(\overrightarrow{IE}, \overrightarrow{AO}) = (\overrightarrow{OD}, \overrightarrow{OC}) \equiv -\frac{\pi}{2} [2\pi]$

- 3 Ω le point d'intersection de médiatrices des segments [IA] et [EO].
- Comme r(E) = O, alors $(\overrightarrow{\Omega O}, \overrightarrow{\Omega E}) = \frac{\pi}{2} [2\pi]$.

 D'autre part, $(\overrightarrow{\Omega_1 O}, \overrightarrow{\Omega_1 E}) = (\overrightarrow{OC}, \overrightarrow{OD}) \equiv \frac{\pi}{2} [2\pi]$.

D'où, $(\overrightarrow{\Omega O}, \overrightarrow{\Omega E}) \equiv (\overrightarrow{\Omega_1 O}, \overrightarrow{\Omega_1 E})$ [2 π]. Les points Ω, E, O, Ω_1 sont cocycliques.

- Le triangle ΩAI est rectangle isocèle

 En effet, comme r(I) = A, alors $\Omega A = \Omega I$ et $(\overrightarrow{\Omega I}, \overrightarrow{\Omega A}) \equiv -\frac{\pi}{2} [2\pi]$. D'où le triangle ΩAI est rectangle isocèle en Ω .
 - Le triangle Ω_1AI est rectangle isocèle
 - Dans le triangle AOD,

 $\Omega_1 \in [AO]; I \in [AD].$

De plus, $(\Omega_1 I)//(OD)$.

D'après le théorème de Thalès, on a $\frac{A\Omega_1}{AO} = \frac{\Omega_1 I}{OD}$.

On en déduit que $\frac{A\Omega_1}{\Omega_1 I} = \frac{AO}{OD} = 1$ d'où $A\Omega_1 = \Omega_1 I$.

- De plus, $(\overrightarrow{\Omega_1 I}, \overrightarrow{\Omega_1 A}) = (\overrightarrow{IE}, \overrightarrow{OA}) \equiv \frac{\pi}{2} [2\pi].$

Donc le triangle $\Omega_1 AI$ est rectangle isocèle en Ω_1 .

Les triangles ΩAI et $\Omega_1 AI$ sont alors rectangles isocèles, d'hypoténuse commune [AI]. Donc le quadrilatère $A\Omega_1 I\Omega$ est un carré.

 $6 \quad S(ABCD) = A\Omega_1 I\Omega.$

La similitude S vérifie en particulier : S(A) = A et $S(B) = \Omega_1$.

D'où, S est la similitude de centre A, d'angle $(\overrightarrow{AB}, \overrightarrow{A\Omega_1}) \equiv \frac{\pi}{4} [2\pi]$ et de rapport :

$$\frac{A\Omega_1}{AB} = \frac{\frac{1}{4}.AC}{AB} = \frac{1}{4}.\frac{1}{\cos(\frac{\pi}{4})} = \frac{\sqrt{2}}{4}.$$

 $\bullet S(B) = \Omega_1 \text{ et } S(C) = I.$

Comme K est le milieu du segment [BC], alors S(K) = K' est le milieu du segment $[\Omega_1 I]$.

• S(C) = I et $S(D) = \Omega$.

Comme L est le milieu du segment [CD], alors S(L) = L' est le milieu du segment $[I\Omega]$.

 $\overline{S}(Q) = Q.$

 \overline{S} est une similitude plane indirecte de centre Q, d'axe (OD) et de rapport $\frac{1}{2}$.

9 a. $\overline{S}(C) = J$.

$$\overline{S}(C) = h_{(Q,\frac{1}{2})} \circ S_{OD}(C) = h_{(Q,\frac{1}{2})}(A).$$

On en déduit que
$$h_{(Q,\frac{1}{2})}(A) = J$$
. D'où $\overrightarrow{QJ} = \frac{1}{2}\overrightarrow{QA}$. $\overrightarrow{QJ} = \frac{1}{2}\overrightarrow{QA}$ $\iff \overrightarrow{QB} + \overrightarrow{BJ} = \frac{1}{2}\overrightarrow{QB} + \frac{1}{2}\overrightarrow{BA}$ Hilliand $\iff \overrightarrow{QB} = \overrightarrow{Q}$ $\iff \overrightarrow{QB} = \overrightarrow{Q}$ $\iff \overrightarrow{Q} = B$

- a. f est est une affinité orthogonale d'axe (OE), de rapport $\frac{1}{2}$.
 - **b.** Voir figure.
 - **c.** (\mathscr{C}') est un ellipse.

