Correction bac 2011 Série C

Exercice 1

1
$$A + B = \int_0^{\frac{\pi}{2}} x \, dx = \left[\frac{x^2}{2}\right]_0^{\frac{\pi}{2}} = \frac{\pi^2}{8}$$

Exercice 1

1
$$A + B = \int_0^{\frac{\pi}{2}} x \, dx = \left[\frac{x^2}{2}\right]_0^{\frac{\pi}{2}} = \frac{\pi^2}{8}$$
.

2 $A - B = \int_0^{\frac{\pi}{2}} x (\cos^2(x) - \sin^2(x)) dx = \int_0^{\frac{\pi}{2}} x \cos(2x) dx$.

Si l'on choisit $\begin{cases} u(x) = x \\ y(x) = x \end{cases}$ alors on peut prendre $\begin{cases} u'(x) = x \\ y'(x) = x \end{cases}$

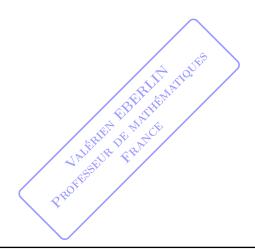
Si l'on choisit
$$\begin{cases} u(x) = x \\ v'(x) = \cos(2x) \end{cases}$$
 alors on peut prendre
$$\begin{cases} u'(x) = 1 \\ v(x) = \frac{1}{2}\sin(2x) \end{cases}$$

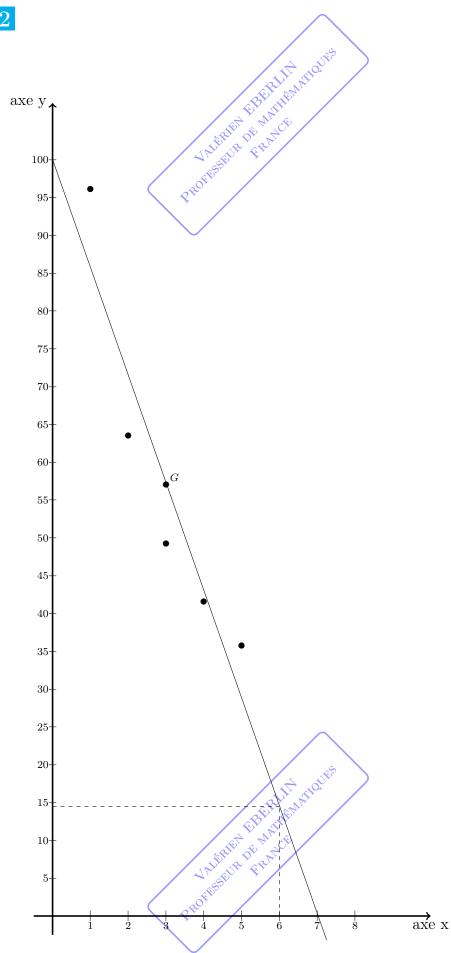
Il vient, en intégrant par parties :

$$A - B = \left[\frac{1}{2}x\sin(2x)\right]_0^{\frac{\pi}{2}} - \frac{1}{2}\int_0^{\frac{\pi}{2}}\sin(2x)\,dx = -\frac{1}{2}\int_0^{\frac{\pi}{2}}\sin(2x)\,dx = \left[\frac{1}{4}\cos(2x)\right]_0^{\frac{\pi}{2}} = -\frac{1}{2}$$

3 $\begin{cases} A + B = \frac{\pi^2}{8} & (1) \\ A - B = -\frac{1}{2} & (2) \end{cases}$

> En additionnant membre à membre l'équation (1) et (2), on en déduit que, $A = \frac{\pi^2}{16} - \frac{1}{4}$. En multipliant l'équation (2) par -1, puis en ajoutant membre à membre la nouvelle équation obtenue et l'équation (1), on en déduit que $B = \frac{\pi^2}{16} + \frac{1}{4}$.





2 L'équation de la droite de régression linéaire de y en x est donnée par : y = ax + b où $a = \frac{\operatorname{Cov}(x, y)}{\operatorname{V}(x)}$ et $b = \overline{y} - a\overline{x}$.

$$\overline{\overline{x}} = \frac{1}{5} \sum_{i=1}^{5} x_i = \frac{1+2+3+4+5}{5} = 3$$

$$a = \frac{\text{Cov}(x,y)}{\text{V}(x)} \text{ et } b = \overline{y} - a\overline{x}.$$

$$\frac{\text{Moyenne}}{\overline{x} = \frac{1}{5} \sum_{i=1}^{5} x_i = \frac{1+2+3+4+5}{5} = 3}$$

$$\overline{y} = \frac{1}{5} \sum_{i=1}^{5} y_i = \frac{96,1+63,5+49,2+41,5}{5} + \frac{11}{5} + \frac{11}{5}$$

$$Cov(x,y) = \frac{1}{5} \sum_{i=1}^{5} x_i y_i - \overline{x}.\overline{y} = \frac{1 \times 96, 1 + \dots + 5 \times 35, 7}{5} - 3 \times 57, 2 = -28.56$$

$$V(x) = \frac{1}{5} \sum_{i=1}^{5} x_i^2 - \overline{x}^2 = \frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2}{5} - 3^2 = 2$$

$$a = \frac{-28,56}{2} = -14,28$$
; $b = 57,2 - (-14,28) \times 3 = 100,04$.

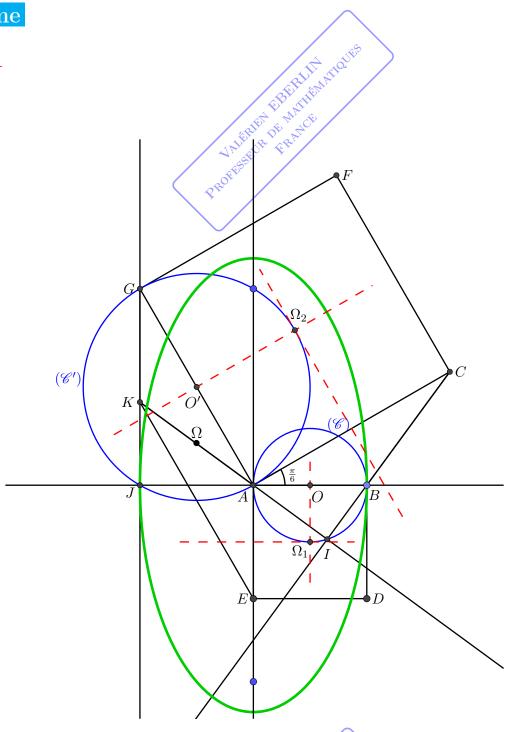
D'où l'équation de la droite de régression linéaire : y = -14, 28 x + 100, 04

3 Pour x = 6, $y = -14.28 \times 6 + 100,04 = 14360$. Le bénéfice au 6ème mois est estimé à 14 360 francs CFA.

Problème

Partie A

1



2 Les triangles ABC et EAK sont isométriques

- AB = EA.
- AC = EK. En effet, comme $\overrightarrow{GK} = \overrightarrow{AE}$, alors \overrightarrow{GKEA} est un parallélogramme. On en déduit que EK = AG. Or AG = AC. D'où $AC \neq EK$.
- $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{EA}, \overrightarrow{EK}) [2\pi]$ En effet, $(AB) \perp (EA)$ et $(AC) \perp (EK)$.

On en déduit que $(\overrightarrow{AB}, \overrightarrow{AC})$ et $(\overrightarrow{EA}, \overrightarrow{EK})$ sont deux angles (aigus) à côtés perpendiculaires. D'où : $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{EA}, \overrightarrow{EK})$ [2 π].

Donc les triangles ABC et EAK sont isométriques puisqu'ils ont un angle de même mesure compris entre deux côtés respectivement de même longueur.

Existence de R_1 telle que $R_1(ABC) = EAK$ Comme AB = EA et $\overrightarrow{AB} \neq \overrightarrow{EA}$, alors il existe une rotation R_1 d'angle $(\overrightarrow{AB}, \overrightarrow{EA}) \equiv \frac{\pi}{2} [2\pi]$, qui transforme A en E et B en A.

Reste à montrer que $R_1(C) = K$.

Soit K' le point tel que $R_1(ABC) = EAK'$.

On a AC = EK'. Or AC = EK. On en déduit que EK = EK'.

On a également $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{EA}, \overrightarrow{EK'})[2\pi]$. Or $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{EA}, \overrightarrow{EK})[2\pi]$. On en déduit que $(\overrightarrow{EA}, \overrightarrow{EK'}) \equiv (\overrightarrow{EA}, \overrightarrow{EK}) [2\pi].$

Donc K = K' et par conséquent $R_1(C) = K$.

Construction de Ω_1 , centre de la rotation R_1

 Ω_1 est le point d'intersection des médiatrices des segments [AE] et [BA].

3 Soit Ω , le centre du parallélogramme GKEA

La rotation R_0 , de centre Ω et d'angle π transforme le triangle EAK en le triangle GKA. D'où $R_2 = R_0 \circ R_1$ transforme le triangle ABC en le triangle GKA.

Angle de R_2

Comme $\pi + \frac{\pi}{2} = \frac{3\pi}{2} \neq 0$ [2 π] alors $R_2 = R_0 \circ R_1$ est une rotation d'angle $\frac{3\pi}{2}$. Construction de Ω_2

 $R_2(A) = G.$

 $R_2(C) = A.$

 Ω_2 est le point d'intersection des médiatrices des segments [AG] et [CA] c'est à dire Ω_2 est le centre du carré ACFG.

a. $f = R_1 \circ R_2$ est la composée de deux rotations, de centres distincts, dont la somme des angles $\frac{\pi}{2} + \frac{3\pi}{2} \equiv 0 [2\pi]$. C'est donc une translation.

b. $f(C) = R_1 \circ R_2(C) = R_1(A) = E$. \overrightarrow{CE} est le vecteur de translation de f.

- $(\overrightarrow{IB}, \overrightarrow{IA}) \equiv \frac{\pi}{2} [2\pi]$. En effet, comme $R_1(B) = A$ et $R_1(C) = K$, alors $(\overrightarrow{BC}, \overrightarrow{AK}) \equiv \frac{\pi}{2} [2\pi]$. Or $(\overrightarrow{BC}, \overrightarrow{AK}) = (\overrightarrow{IB}, \overrightarrow{IA})$. Donc $(\overrightarrow{IB}, \overrightarrow{IA}) \equiv \frac{\pi}{2} [2\pi]$.
 - $(\overrightarrow{\Omega_1 B}, \overrightarrow{\Omega_1 A}) \equiv \frac{\pi}{2} [2\pi] \text{ car } \Omega_1 \text{ est le centre du carré } ABDE.$

On en déduit que les triangles IAB et Ω_1AB sont rectangles, d'hypoténuse commune [AB]. Donc les points A, B, I et Ω_1 sont situés sur le même cercle (\mathscr{C}) de centre O, milieu de [AB].

• $(\overrightarrow{JA}, \overrightarrow{JG}) \equiv \frac{\pi}{2} [2\pi].$ 6

• $(\overrightarrow{\Omega_2 G}, \overrightarrow{\Omega_2 A}) \equiv \frac{\pi}{2} [2\pi].$

On en déduit que les triangles JAG et Ω_2^SAG sont rectangles, d'hypoténuse commune [AG]. Donc les points A, G, J et Ω_2 sont situés sur le même cercle (\mathscr{C}') de centre O', milieu de [AG].

Partie B

S(A) = A et S(O) = O'.

 $\frac{1O'}{1O} \Rightarrow 2 \text{ et d'angle } (\overrightarrow{AO}, \overrightarrow{AO'}) \equiv \frac{\pi}{6} + \frac{\pi}{2} [2\pi] = \frac{2\pi}{3} [2\pi].$ S est la similitude de centre A, de rapport $\frac{AO'}{AO}$

8 L'expression complexe de S est donnée par z' = 2 e $i^{\frac{2\pi}{3}}(z - z_A)$ avec $z_A = 0$ (origine du repère).

D'où $z' = (-1 + i\sqrt{3})z$.

D'où $z' = (-1 + i\sqrt{3})z$.

9 Comme $z' = 2 e^{i\frac{2\pi}{3}} z$, on en déduit que $z = \frac{1}{2} e^{-i\frac{2\pi}{3}} z' = \left(-\frac{1}{4} - i\frac{\sqrt{3}}{4}\right)z'$.

En remplaçant z par x+iy et z' par x'+iy' dans l'expression $z=\left(-\frac{1}{4}-i\frac{\sqrt{3}}{4}\right)z'$, on obtient après identification des parties réelles et des parties imaginaires :

$$x = \frac{1}{4}(-x' + \sqrt{3}y')$$
 et $y = -\frac{1}{4}(\sqrt{3}x' + y')$

Partie C

10 $4x^2 + y^2 = 4 \iff \frac{x^2}{1^2} + \frac{y^2}{2^2} = 1$

 (\mathscr{E}) est une ellipse :

- de centre A(0,0);
- de sommets : B(1,0); J(-1,0); (0,2); (0,-2)
- de demi-distance focale $c = \sqrt{2^2 1^2} = \sqrt{3}$ et de foyers : $F(0, \sqrt{3})$ et $F'(0, -\sqrt{3})$.
- **11** En remplaçant x par $\frac{1}{4}(-x'+\sqrt{3}y')$ et y par $-\frac{1}{4}(\sqrt{3}x'+y')$ dans l'équation $4x^2+y^2=4$, on a: $7x'^2 - 6\sqrt{3}x'y' + 13y'^2 = 64$.

D'où une équation de (\mathscr{E}'): $7x^2 - 6\sqrt{3}xy + 13y^2 = 64$.

