Correction bac 2010 Série C

Exercice 1

1

a.

ice 1
$$x^2 \equiv -1 [25] \iff x^2 + 1 \equiv 0 [25]^{\text{Rother Little Little$$

Donc les équations $x^2 \equiv -1$ [25] et $x^2 = -1 + 25k$ où $k \in \mathbb{Z}$, sont équivalentes.

b. Si k = 2 alors $x^2 = -1 + 25 \times 2 = 49$. D'où x = 7 ou x = -7.

- si n=0 alors $2^0-4\equiv -3$ [5] $\equiv 2$ [5]. Le reste de la division euclidienne de 2^0-4

- si n=1 alors $2^1-4\equiv -2$ [5] $\equiv 3$ [5]. Le reste de la division euclidienne de 2^1-4 par 5 est 3.

- si n=2 alors $2^2-4\equiv 0$ [5]. Le reste de la division euclidienne de 2^2-4 par 5

- si n=3 alors $2^3-4\equiv 4$ [5]. Le reste de la division euclidienne de 2^3-4 par 5

- si n=4 alors $2^4-4\equiv 12\,[5]\equiv 2\,[5]$. Le reste de la division euclidienne de 2^4-4 par 5 est 2.

Déduisons les restes suivant les valeurs de n

Soit $n \in \mathbb{N}$.

Alors n peut s'écrire n = 4k, n = 4k + 1, n = 4k + 2 ou n = 4k + 3 avec $k \in \mathbb{Z}$.

Comme $2^4 \equiv 1 [5]$, alors $(2^4)^k \equiv 1 [5]$. On en déduit que :

- si n = 4k alors $2^{4k} - 4 \equiv (2^4)^k - 4[5] \equiv -3[5] \equiv 2[5]$. Le reste de la division euclidienne de $2^{4k} - 4$ par 5 est 2.

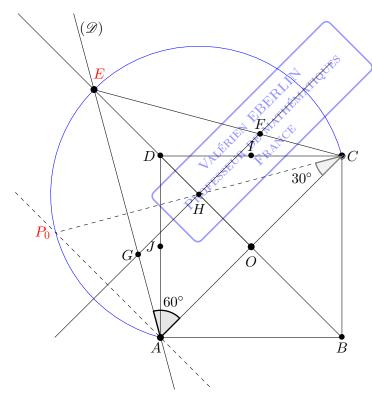
- si n=4k+1 alors $2^{4k+1}-4\equiv \left(2^4\right)^k.2-4\,[5]\equiv -2\,[5]\equiv 3\,[5].$ Le reste de la division euclidienne de $2^{4k+1} - 4$ par 5 est 3.

- si n = 4k + 2 alors $2^{4k+2} - 4 \equiv (2^4)^k \cdot 2^2 - 4 = 0$. Le reste de la division euclidienne de $2^{4k+2} - 4$ par 5 est 0.

- si n=4k+3 alors $2^{4k+3}-4\equiv \left(2^4\right)^k.2^3-4\left[5\right] \not\equiv 4\left[5\right]$. Le reste de la division euclidienne de $2^{4k+3} - 4$ par 5 est 4.

b. $2010 = 4 \times 502 + 2$, on en déduit que le reste de la division euclidienne de $2^{2010} - 4$ par 5 est 0. Par conséquent $2^{2010} - 4$ est divisible par 5.

Exercice



Soit P_0 un point tel que $(\overrightarrow{P_0A}, \overrightarrow{P_0C}) \equiv \frac{\pi}{3} [2\pi]$. Alors $P_0 \in (\Gamma)$.

$$M\in \, \Gamma \, \Longleftrightarrow \, \overline{(\overrightarrow{MA},\overrightarrow{MC})} \equiv \overline{(\overrightarrow{P_0A},\overrightarrow{P_0C})} \, [2\pi]$$

 $\iff M$ est un point de l'arc de cercle $\widehat{AP_0C}$

D'où Γ est l'arc de cercle $\widehat{AP_0C}$.

a. $(\overrightarrow{EA}, \overrightarrow{EC}) \equiv \frac{\pi}{3} [2\pi] \text{ car } E \text{ est un point de } (\Gamma).$

De plus, $(\overrightarrow{AC}, \overrightarrow{AE}) \equiv \frac{\pi}{3} [2\pi] \operatorname{car} ((AC), (\mathscr{D})) \equiv \frac{\pi}{3} [\pi] \operatorname{et} E \in (\mathscr{D}).$

On en déduit que le triangle EAC admet deux angles de mesure $\frac{\pi}{3}$. C'est par conséquent un triangle équilatéral.

- **b.** Comme EA = EC et $\overrightarrow{EA} \neq \overrightarrow{EC}$, alors il existe une rotation r d'angle $(\overrightarrow{EA}, \overrightarrow{EC}) \equiv \frac{\pi}{3} [2\pi]$, de centre E, qui transforme A en C.
- **a.** Dans le triangle EAC, |3|

-
$$(GF)/\!/$$
 (AC) et $(AG)\cap (CF)=\{E\}$

- D'après le théorème de Thalès, $\frac{EG}{EA} = \frac{EF}{EC}$.

Dans le triangle EOA,

-
$$(GH)//(AO)$$
 et $(AG) \cap (OH) = \{E\}$

- (GH)//(AO) et $(AG) \cap (OH) = \{E\}$ - D'après le théorème de Thalès, $\frac{EG}{EA} = \frac{EH}{EO}$.

On en déduit que $\frac{EG}{EA} = \frac{EF}{EC} = \frac{EH}{EO}$.

Or $\frac{EH}{EO} = \frac{2}{3}$ car H est le centre de gravité du triangle EAC.

D'où
$$\frac{EG}{EA} = \frac{EF}{EC} = \frac{2}{3}$$
.

b. Les points E, G, A ainsi que E, F, C étant alignés dans le même ordre, on en déduit les égalités vectoriels : $\overrightarrow{EG} = \frac{2}{3}\overrightarrow{EA}$ et $\overrightarrow{EF} = \frac{2}{3}\overrightarrow{EC}$.

Ce qui montre que G et F sont respectivement les transformées de A et C par l'homothétie de centre E et de rapport $\frac{2}{3}$

c. Soit h l'homothétie de centre E et de rapport $\frac{2}{3}$ qui transforme A en G et C en F. Posons $S = h \circ r$.

S est une similitude plane directe de centre E, de rapport $\frac{2}{3}$ et d'angle $\frac{\pi}{3}$ qui transforme A en F.

En effet, $S(E) = h \circ r(E) = h(E) = E$ et $S(A) = h \circ r(A) = h(C) = F$.

Problème

Partie A

- 1 L'équation caractéristique associée à l'équation différentielle $y'' + \pi^2 y = 0$ est : $r^2 + \pi^2 = 0$. Elle admet deux racines distinctes : $r_1 = i \pi = 0 + i \pi$ et $r_2 = -i \pi = 0 - i \pi$. Donc la solution générale est : $y(x) = e^{0x}(c_1\cos(\pi x) + c_2\sin(\pi x)) = c_1\cos(\pi x) + c_2\sin(\pi x)$ où c_1, c_2 sont des constantes réelles quelconques.
- **2** g est de la forme $g(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x)$ avec g(0) = 0 et $g'(0) = 2\pi$.

$$\begin{cases} g(0) = 0 \\ g'(0) = 2\pi \end{cases} \iff \begin{cases} c_1 = 0 \\ c_2\pi = 2\pi \end{cases} \iff \begin{cases} c_1 = 0 \\ c_2 = 2 \end{cases}$$

g est la fonction définie sur \mathbb{R} par : $g(x) = 2\sin(\pi x)$.

Partie B

- **a.** La fonction $x \mapsto 2\sin \pi x$ existe pour tout $x \in [-4, 0]$; la fonction $x \mapsto x^2 \left(\frac{1}{2} - \ln x\right)$ existe pour tout $x \in]0; +\infty[$. Donc $E_f = [-4; +\infty[$. $\frac{\text{Continuit\'e en } 0}{\lim_{x \to 0_-} f(x) = f(0)} = 2\sin(\pi \times 0) = 0.$ $\lim_{x \to 0_+} f(x) = \lim_{x \to 0_+} (\frac{1}{2}x^2 - x^2 \ln x) = 0.$ Comme $\lim_{x \to 0_-} f(x) = \lim_{x \to 0_+} f(x) = \lim_{x \to 0_+} f(x) = f(0), \text{ alors la fonction } f \text{ est continue en } 0.$
 - b. <u>Continui</u>té en 0.

$$\lim_{x \to 0_{-}} f(x) = f(0) = 2\sin(\pi \times 0) = 0.$$

$$\lim_{x \to 0_+} f(x) = \lim_{x \to 0_+} \left(\frac{1}{2}x^2 - x^2 \ln x\right) = 0.$$

Dérivabilité en 0.

$$\lim_{x \to 0_{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{-}} \frac{2 \sin \pi x}{x} = 2\pi \lim_{u \to 0_{-}} \frac{\sin u}{u} \neq 2\pi \text{ où l'on a posé } u = \pi x.$$

$$\lim_{x \to 0_{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{+}} \left(\frac{1}{2}x - x \ln x\right) = 0.$$

Comme $\lim_{x\to 0_-} \frac{f(x)-f(0)}{x} \neq \lim_{x\to 0_+} \frac{f(x)-f(0)}{x}$, alors la fonction f n'est pas dérivable en 0.

c. $\forall x \in [-4; -2]$, on a $2\sin \pi(x+2) = 2\sin(\pi x + 2\pi) = 2\sin \pi x$.

La fonction $x \mapsto 2\sin \pi x$, définie sur [-4; 0], est périodique de période 2.

On peut alors restreindre son étude sur [-2;0], puis reporter son tracé sur la portion [-4;-2] par la translation de vecteur $-2\vec{i}$.

D'où l'étude de la fonction f peut être réduite à l'intervalle $I = [-2; +\infty[$.

a. La fonction f est dérivable sur $]-2;0[\cup]0;+\infty[$.

$$\forall x \in]-2;0[, f'(x) = 2\pi \cos \pi x.$$

$$\forall x \in]0; +\infty[, f'(x) = -2x \ln x.$$

Signes de f'

Sur] -2; 0[, f'(x) est du signe de $\cos \pi x$.

$$\cos \pi x \ge 0 \iff -\frac{\pi}{2} + 2k\pi \le \pi x \le \frac{\pi}{2} + 2k\pi \quad ; \ k \in \mathbb{Z}$$
$$\iff -\frac{1}{2} + 2k \le x \le \frac{1}{2} + 2k \quad ; \ k \in \mathbb{Z}$$
$$\iff x \in] - 2; -\frac{3}{2}] \text{ ou } x \in [-\frac{1}{2}; 0] \quad (\text{en prenant } k = 0 \text{ et } k = -1)$$

D'où, sur l'intervalle $]-2;0[, f'(x) \ge 0 \iff x \in]-2;-\frac{3}{2}]$ ou $x \in [-\frac{1}{2};0[$.

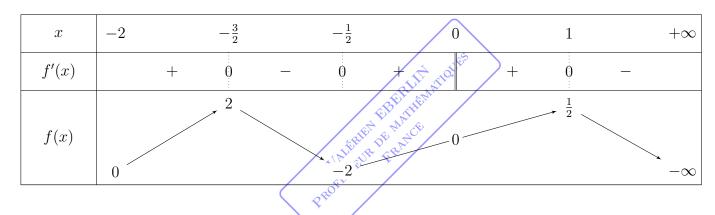
Sur
$$]0; +\infty[$$
,

$$f'(x) = -2x \ln x \ge 0 \iff x \in]0;1];$$

$$f'(x) = -2x \ln x \le 0 \iff x \in [1; +\infty[.$$

Tableau de variation de f.

$$\lim_{x \to +\infty} f(x) = -\infty.$$



b. Branches infinies

$$\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \, x \ln x \left(\frac{1}{2\ln x} - 1 \right) = -\infty.$$

La courbe (\mathscr{C}) admet une branche parabolique de direction (Oy) en $+\infty$.

Points d'intersection avec l'axe (Ox)

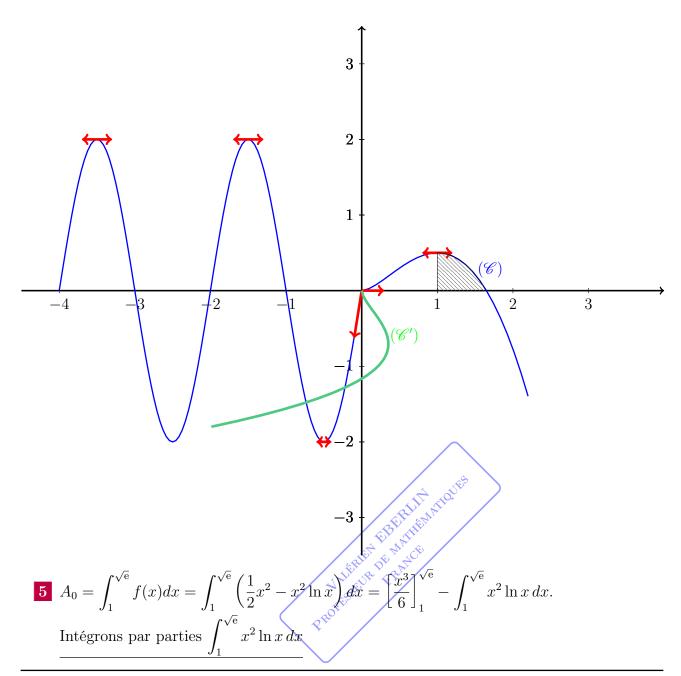
Si
$$-2 \le x \le 0$$

$$f(x) = 0 \iff \sin \pi x = 0 \iff x = 2$$
 ou $x = -1$ ou $x = 0$

$$\frac{\operatorname{Si} - 2 \le x \le 0}{f(x) = 0} \iff \sin \pi x = 0 \iff x = 2 \text{ on } x = -1 \text{ on } x = 0$$

$$\frac{\operatorname{Si} x > 0}{f(x) = 0} \iff x^2 \left(\frac{1}{2} - \ln x\right) = 0 \iff \ln x = \frac{1}{2} \iff x = \sqrt{e}$$

Sur $[-2; +\infty[$, les points d'intersection de la courbe (\mathscr{C}) avec l'axe des abscisses sont : (-2,0); (-1,0); (0,0) et $(\sqrt{e},0)$.



Si l'on choisit
$$\begin{cases} u(x) = \ln x \\ v'(x) = x^2 \end{cases}$$
 alors on peut prendre
$$\begin{cases} u'(x) = \frac{1}{x} \\ v(x) = \frac{x^3}{3} \end{cases}$$

Il vient, en intégrant par parties :
$$\int_{1}^{\sqrt{e}} x^{2} \ln x \, dx = \left[\frac{x^{3}}{3} \ln x\right]_{1}^{\sqrt{e}} - \frac{1}{3} \int_{1}^{\sqrt{e}} x^{2} \, dx.$$

D'où
$$A_0 = \left[\frac{5x^3}{18} - \frac{x^3}{3} \ln x\right]_1^{\sqrt{e}} = \frac{2 e \sqrt{e + 5}}{18} \text{ u.a} = \frac{4 e \sqrt{e} - 10}{9} \text{ cm}^2.$$

- a. Comme toute similitude de rapport k multiplie l'aire de la transformée par k^2 , la similitude S multiplie l'aire de la transformée par $\left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$.

D'où :
$$A_n = \frac{1}{2}A_{n-1} = \left(\frac{1}{2}\right)^2 A_{n-2} = \cdots = \left(\frac{1}{2}\right)^n A_0$$
.
b. $(A_n)_n$ est une suite géométrique de raison $\frac{1}{2}$.

$$S_n = A_0 + \frac{1}{2}A_0 + \dots + \left(\frac{1}{2}\right)^n A_0 = \frac{A_0 \times \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)}{1 - \frac{1}{2}} = 2A_0\left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$$

c. $\lim_{n \to +\infty} S_n = 2A_0 = \frac{8 e \sqrt{e} - 20}{9} \text{ cm}^2$

