Correction bac 2009 - Série C

ALERENT DE MARKET MARKE

Exercice 1

On en déduit que la suite (a_n) de terme générale $a_n = \alpha 2^n$ et (b_n) de terme général $b_n = \beta(-3)^n$ sont les suites géométriques de (S).

Le premier terme de (a_n) et celui de (b_n) étant égal à 1, on a $a_0 = \alpha = 1$ et $b_0 = \beta = 1$.

D'où : $a_n = 2^n$ et $b_n = (-3)^n$ pour tout $n \in \mathbb{N}$.

b. Soit
$$n \in \mathbb{N}$$
.

$$U_{n+2} + U_{n+1} - 6U_n = \alpha 2^{n+2} + \beta (-3)^{n+2} + \alpha 2^{n+1} + \beta (-3)^{n+1} - 6(\alpha 2^n + \beta (-3)^n)$$

$$= \alpha \underbrace{(2^{n+2} + 2^{n+1} - 6 \cdot 2^n)}_{=0} + \beta \underbrace{((-3)^{n+2} + (-3)^{n+1} - 6(-3)^n)}_{=0}$$

$$= 0$$

Donc $(U_n) \in S$.

2 a. Déterminons d'abord une solution particulière de l'équation
$$8\alpha - 27\beta = -11$$

L'algorithme d'Euclide appliqué à 27 et 8 donne :

$$27 = 8 \times 3 + 3$$

$$8 = 3 \times 2 + 2$$

$$3 = 2 \times 1 + 1$$

En remontant l'algorithme d'Euclide, l'on obtient :

$$1 = 3 - 2 \times 1$$

$$1 = 3 - (8 - 3 \times 2) = -8 + 3 \times 3$$

$$1 = -8 + (27 - 8 \times 3) \times 3 = -8 \times 10 + 27 \times 3$$

Donc
$$8 \times (-10) - 27 \times (-3) = 1$$
.

En multipliant les deux membres de l'égalité ci-dessus par -11, on obtient :

$$8 \times (110) - 27 \times (33) = -11.$$

D'où (110, 33) est une solution particulière de l'équation $8\alpha - 27\beta = -11$.

Ensemble des solutions de l'équation $8\alpha - 27\beta \neq -11$

$$\begin{cases}
8\alpha - 27\beta = -11 \\
8 \times 110 - 27 \times 33 = -11
\end{cases}
\iff 8\alpha - 27\beta = 8 \times 110 - 27 \times 33 \iff 8(\alpha - 100) = 27(\beta - 33)$$

On en déduit 8 divise $27(\beta - 33)$.

Comme 8 est premier avec 27, alors d'après le théorème de Gauss, 8 divise $\beta - 33$.

Il existe donc un entier k tel que $\beta - 33 = 8k$. D'où $\beta = 33 + 8k$.

En remplaçant β par 33+8k dans l'équation $8\alpha - 27\beta = -11$, on obtient $\alpha = 110 + 27k$.

L'ensemble des solutions de l'équation $8\alpha - 27\beta = -11$ est : $\{(110 + 27k; 33 + 8k); k \in \mathbb{Z}\}.$

- **b.** En remplaçant α par 110 + 27k et β par 33 + 8k dans l'équation $4\alpha + 9\beta = 17$, on trouve k = -4.

c. La suite
$$(U_n)$$
 est de terme général $U_n = \alpha 2^n + \beta (-3)^n$.
$$\begin{cases} U_2 = 17 \\ U_3 = -11 \end{cases} \iff \begin{cases} 4\alpha + 9\beta = 17 \\ 8\alpha - 27\beta = -11 \end{cases}$$

Or d'après 2.a., α et β sont solutions de l'équation $8\alpha - 27\beta = -11$ s'ils sont de la forme : $\alpha = 110 + 27k$ et $\beta = 33 + 8k$.

Mais d'après 2. b., $\alpha = 110 + 27k$ et $\beta = 33 + 8k$ sont solutions de l'équation $4\alpha + 9\beta = 17 \text{ si } k = -4.$

D'où $\alpha = 110 + 27 \times (-4) = 2$ et $\beta = 33 + 8 \times (-4) = 1$.

On en déduit aussi que pour $U_2 = 17$ et $U_3 = -11$, la forme générale de la suite (U_n) est $U_n = 2.2^n + (-3)^n$.

d.

Soit $n \in \mathbb{N}$.

On sait que $-3 \equiv 2 [5]$. On en déduit que $(-3)^n \equiv 2^n [5]$.

En ajoutant membre à membre 2.2^n à l'égalité précédente, on a : $2.2^n + (-3)^n \equiv 2.2^n + 2^n$ [5].

C'est à dire $2 \cdot 2^n + (-3)^n \equiv 2^n (1+2) [5]$.

D'où $U_n \equiv 3.2^n [5]$ pour tout $n \in \mathbb{N}$.

- si n=0, $U_0\equiv 3$ [5]. Le reste de la division euclidienne de U_0 par 5 est 3.
 - si $n=1, U_1 \equiv 6$ [5] $\equiv 1$ [5]. Le reste de la division euclidienne de U_1 par 5 est 1.
 - si $n=2,\ U_2\equiv 12\,[5]\equiv 2\,[5]$. Le reste de la division euclidienne de U_2 par 5 est 2.
 - si $n=3, U_3\equiv 24\,[5]\equiv 4\,[5]$. Le reste de la division euclidienne de U_3 par 5 est 4.
 - si n=4, $U_4\equiv 48$ [5] $\equiv 3$ [5]. Le reste de la division euclidienne de U_4 par 5 est 3.

Déduisons les restes suivant les valeurs de n

Soit $n \in \mathbb{N}$.

Alors n peut s'écrire n = 4k, n = 4k + 1, n = 4k + 2 ou n = 4k + 3 avec $k \in \mathbb{Z}$.

Comme $2^4 \equiv 1 [5]$, alors $(2^4)^k \equiv 1 [5]$. On en déduit que :

- si $n=4k,\ U_{4k}\equiv 3.2^{4k}\,[5]\equiv 3\left(2^4\right)^k\,[5]\equiv 3\,[5].$ Le reste de la division euclidienne de U_{4k} par 5 est 3.
- si n = 4k + 1, $U_{4k+1} \equiv 3.2^{4k+1} [5] \equiv 3 \times 2.2^{4k} [5] \equiv 6 (2^4)^k [5] \equiv 6 [5] \equiv 1 [5]$. Le reste de la division euclidienne de U_{4k+1} par 5 est 1.
- si n = 4k + 2, $U_{4k+2} \equiv 3.2^{4k+2} [5] \equiv 3 \times 4.2^{4k} [5] \equiv 12 (2^4)^k [5] \equiv 12 [5] \equiv 2 [5]$. Le reste de la division euclidienne de U_{4k+2} par 5 est 2.
- si n = 4k + 3, $U_{4k+3} \equiv 3.2^{4k+3} [5] \equiv 3 \times 8.2^{4k} [5] \equiv 24 (2^4)^k [5] \equiv 24 [5] \equiv 4 [5]$. Le reste de la division euclidienne de U_{4k+3} par 5 est 4.
- a. En remarquant que $W_n = 2^{n+1} + (-3)^n = 2 \cdot 2^n + (-3)^n$, on en déduit que la suite (W_n) n'est autre que la suite (U_n) . D'après 2.d., $W_n \equiv 3.2^n$ [5] pour tout $n \in \mathbb{N}$.

$$S_n = W_0 + W_1 + \dots + W_n$$

$$\equiv 3.2^0 + 3.2^1 + \dots + 3.2^n [5]$$

$$\equiv 3(2^0 + 2^1 + \dots + 2^n) [5]$$

$$\equiv 3 \times \frac{1 - 2^{n+1}}{1 - 2} \equiv -3(1 - 2^{n+1}) [5]$$

$$\equiv 2(1 - 2^{n+1}) [5] \quad \text{car } -3 \equiv 2 [5]$$

$$\equiv 2 - 4.2^n [5]$$
b. $1956 = 4 \times 489$.
$$S_{1956} \stackrel{\cdot}{=} 2 - 4.2^{1956} [5] \equiv 2 - 4. (2^4)^{489} \equiv 2 - 4 \times 1 [5] \equiv -2$$
Le reste de la division euclidienne de S_{1956} par 5 est 3.

$$S_{1956}$$
, $\equiv 2 - 4.2^{1956}$ [5] $\equiv 2 - 4.(2^4)^{489} \equiv 2 - 4 \times 1$ [5] $\equiv -2$ [5] $\equiv 3$ [5].

Exercice 2

1 L'équation $z^2 + (\sqrt{3} + i)z + 1 = 0$ admet pour discriminant $\Delta = -2 + 2\sqrt{3}i$. Cherchons un nombre complexe u = x + iy tel que $u^2 = -2 + 2\sqrt{3}i$.

 $x^2 - y^2 + 2ixy = -2 + 2\sqrt{3}i$.

Par identification des parties réelles et des parties imaginaires, on a : $x^2 - y^2 = -2$ et $xy = \sqrt{3}$.

D'autre part, comme $|u|^2 = |-2 + 2\sqrt{3}i|$ alors $x^2 + y^2 = 4$.

On obtient le système d'équations suivant : $\begin{cases} x^2-y^2=-2 \ (1) \\ x^2+y^2=4 \ (2) \end{cases}$

En additionnant membre à membre l'équation (1) et (2), on obtient x = -1 ou x = 1;

En multipliant l'équation (1) par -1, puis en ajoutant membre à membre la nouvelle équation obtenue et l'équation (2), on en déduit que $y = -\sqrt{3}$ ou $y = \sqrt{3}$.

L'équation (3) nous indique que x et y sont de même signe.

D'où
$$\Delta = (1 + i\sqrt{3})^2$$
.

On en déduit que les solutions de l'équation (E) sont :

$$z' = \frac{(\sqrt{3} - 1)}{2}(-1 + i)$$
 et $z'' = \frac{(\sqrt{3} + 1)}{2}(-1 - i)$

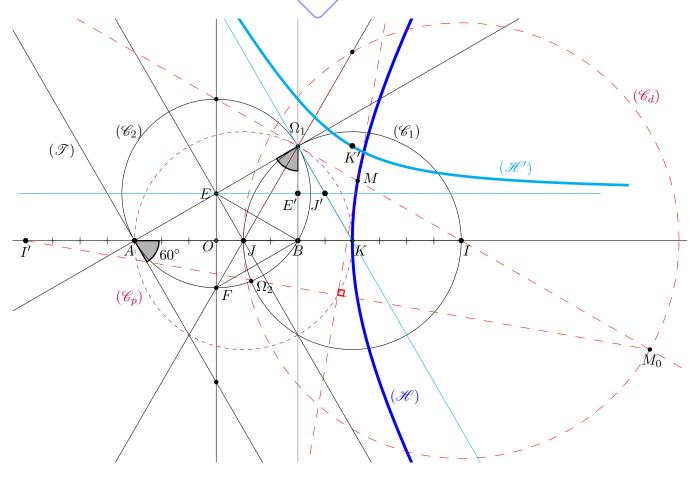
$$2 z' = \frac{(\sqrt{3}-1)}{2}(-1+i) = \frac{(\sqrt{3}-1)}{2}\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right) = \frac{(\sqrt{6}-\sqrt{2})}{2}\left(\cos(\frac{3\pi}{4})+i\sin(\frac{3\pi}{4})\right).$$

$$z'' = \frac{(\sqrt{3}+1)}{2}(-1-i) = \frac{(\sqrt{3}+1)}{2}\sqrt{2}\left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = \sqrt{\frac{6}{4}+\sqrt{2}}\left(\cos(-\frac{3\pi}{4}) + i\sin(-\frac{3\pi}{4})\right).$$
oblème

Construction du point I

Construction du point J $AI = 2\overrightarrow{AB}$ I est le point tel que B soit le milieu $AI = 2\overrightarrow{AB}$ I est le point tel que B soit le milieu $AI = 2\overrightarrow{AB}$ I est le point tel que B soit le milieu $AI = 2\overrightarrow{AB}$ I est le point tel que B soit le milieu

J est le point du segment [AB] tel que



II

2. Le centre du cercle (\mathscr{C}_2) est le point d'intersection de la médiatrice de [AB] et de la perpendiculaire à (\mathcal{T}) passant par A.

3.

Comme $J \in (\mathscr{C}_1)$ et $\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AB}$ alors J est un point du cercle (\mathscr{C}_1) situé sur la corde $[AB] \setminus \{A, B\}$ de (\mathscr{C}_2) . Par conséquent, J est un point de l'arc du cercle (\mathscr{C}_1) qui est situé dans le cercle (\mathscr{C}_2) et J est distinct de Ω_1 et Ω_2 .

D'autre part, $B \in (\mathscr{C}_2)$ et $\overrightarrow{IB} = \frac{3}{3}\overrightarrow{IJ}$ (voir*) alors B est un point du cercle (\mathscr{C}_2) situé sur la corde $[IJ]\setminus\{I,J\}$ de (\mathscr{C}_1) Par conséquent, B est un point de l'arc du cercle (\mathscr{C}_2) qui est situé dans le cercle (\mathscr{C}_1) et B est distinct de Ω_1 et Ω_2 .

On en déduit que les points d'intersection Ω_1 et Ω_2 des cercles (\mathscr{C}_1) et (\mathscr{C}_2) sont situés de part et d'autre de la droite (JB) = (AB).

 $(3) \overrightarrow{II} = \overrightarrow{O} \iff 2\overrightarrow{JI} + 2\overrightarrow{IB} + \overrightarrow{JI} + \overrightarrow{IA} = \overrightarrow{O} \iff 3\overrightarrow{JI} + 4\overrightarrow{IB} = \overrightarrow{O} \iff \overrightarrow{IB} = \frac{3}{4}\overrightarrow{IJ}$

III 1

Soit Ω , le centre de la similitude S. Alors Ω vérifie $(\overrightarrow{\Omega A}, \overrightarrow{\Omega B}) \equiv \frac{\pi}{3} [2\pi]$.

Or
$$((\mathscr{T}), (AB)) = \frac{\pi}{3} [\pi]$$
. On en déduit que $((\mathscr{T}), (AB)) \equiv (\overrightarrow{\Omega A}, \overrightarrow{\Omega B}) [\pi]$.

L'angle formé par la tangente (\mathscr{T}) et la corde [AB] a même mesure que l'angle inscrit $(\overrightarrow{\Omega A}, \overrightarrow{\Omega B})$ interceptant cette corde. Donc $\Omega \in (\mathscr{C}_2)$.

De plus, comme $(\overrightarrow{\Omega A}, \overrightarrow{\Omega B})$ est orienté positivement, alors $\Omega = \Omega_1$.

2 Comme S(A) = B, alors $A\Omega_1 = 2B\Omega_1$.

On a alors:

$$AB^{2} = A\Omega_{1}^{2} + B\Omega_{1}^{2} - 2A\Omega_{1}.B\Omega_{1}\cos(\frac{\pi}{3})$$

$$= A\Omega_{1}^{2} + B\Omega_{1}^{2} - 2(2B\Omega_{1}).B\Omega_{1} \times \frac{1}{2}$$

$$= A\Omega_{1}^{2} - B\Omega_{1}^{2}$$

On en déduit que $AB^2 + B\Omega_1^2 = A\Omega_1^2$.

D'après la réciproque du théorème de Pythagore, le triangle $AB\Omega_1$ est rectangle en B. Par conséquent, le centre E du cercle circonscrit au triangle $AB\Omega_1$ est également le milieu de l'hypoténuse $[A\Omega_1]$. Donc les points A, E et Ω_1 sont alignés.

Partie B

 \mathbf{I}

En effet, Comme $2\overrightarrow{JB} + \overrightarrow{JA} = \overrightarrow{0}$, alors $2\overrightarrow{JB} + \overrightarrow{JB} + \overrightarrow{BA} = \overrightarrow{0}$. Il en résulte que $3\overrightarrow{JB} + 2\overrightarrow{BO} = \overrightarrow{0}$. D'où $\overrightarrow{BJ} = \frac{2}{3}\overrightarrow{BO}$

• (BO) où $O \in [EF]$, est la médiane du triangle EFB issue de B.

Donc J est le centre de gravité du triangle EFB.

b. Montrons que EJ = BK

 \overline{J} étant le centre de gravité du triangle équilatéral EFB, alors EJ=JB. Or JB=BK. Donc EJ=BK.

Montrons que $(\overrightarrow{EJ}, \overrightarrow{BK}) = 60^{\circ}$.

$$(EJ) \perp (\Omega_1 A) \text{ et } (BK) \perp (\Omega_1 B)$$

De plus, les angles $(\overrightarrow{EJ},\overrightarrow{BK})$ et $(\overrightarrow{\Omega_1A},\overrightarrow{\Omega_1B})$ étant aigus, on en déduit que $(\overrightarrow{EJ},\overrightarrow{BK}) = (\overrightarrow{\Omega_1A},\overrightarrow{\Omega_1B}) = 60^{\circ}$

- c. Comme EJ = BK et $\overrightarrow{EJ} \neq \overrightarrow{BK}$, il existe un rotation R d'angle $(\overrightarrow{EJ}, \overrightarrow{BK}) = 60^{\circ}$ qui transforme E en B et J en K.
- 2 Comme le triangle $\Omega_1 EB$ est équilatéral, alors la médiatrice de [EB] passe par le point Ω_1 .

D'autre part, on a BJ = BK et (JK) \bot $(B\Omega_1)$. On en déduit que $(B\Omega_1)$ est la médiatrice de [JK].

Donc les médiatrices des segments [EB] et [JK] se coupent en Ω_1 , centre de la rotation R.

- II Le triangle EFB étant équilatéral de centre de gravité J, alors la médiatrice de [EB] passe par les points J et F.

 De plus, comme le triangle $\Omega_1 EB$ est équilatéral, alors la médiatrice de [EB] passe par Ω_1 .

 Donc les points Ω_1 , J et F sont alignés.
 - $g = T_{\overrightarrow{BA}} \circ R = S_{(EF)} \circ S_{(\Omega_1 B)} \circ S_{(\Omega_1 B)} \circ S_{(\Omega_1 F)} = S_{(EF)} \circ S_{(\Omega_1 F)}.$ $g \text{ est la composée de deux symétries axiales } S_{(EF)} \text{ et } S_{(\Omega_1 F)} \text{ d'axes sécants en } F.$ C'est donc une rotation de centre F.

Partie C

1 (IJ) est l'axe focal de (\mathcal{H}) .

Le second foyer de l'hyperbole (\mathcal{H}) est le point I', symétrique de I par rapport à J. A et K sont les sommets de l'hyperbole (\mathcal{H}) .

Construction de M

Soit M_0 , le point d'intersection de $[\Omega_1 I)$ et du cercle directeur (\mathcal{C}_d) associé au foyer I. M est le point d'intersection de $[I\Omega_1]$ et de la médiatrice de $[I'M_0]$.

En effet,

$$MI'-MI=MM_0-MI \quad ({\rm car}\ M\ {\rm est\ sur}\ {\rm la\ m\'ediatrice\ de}\ [I'M_0])$$

$$=IM_0$$

$$=AK$$

Ce qui prouve que M est un point de l'hyperbole.

2 $(F\Omega_1)$ asymptote de (\mathcal{H})

 $\overline{(J\Omega_1) \perp (I\Omega_1) \text{ car le triangle } IJ\Omega_1 \text{ est inscrit dans le cercle } (\mathscr{C}_1) \text{ de diamètre } [IJ].$

Or $[J\Omega_1]$ est un rayon du cercle principal (\mathscr{C}_p) . On en déduit que $(I\Omega_1)$ où I est un foyer de (\mathscr{H}) est la tangente à (\mathscr{C}_p) en Ω_1 .

Donc $(J\Omega_1)$ est une asymptote de (\mathcal{H}) et d'après II. 1., $(F\Omega_1)$ est asymptote à (\mathcal{H}) .

(JE) asymptote de (\mathcal{H})

- $\overline{(JE)}$ étant le symétrique de $(F\Omega_1)$ par rapport à l'axe focal (JA) est par conséquent la seconde asymptote de (\mathcal{H}) .
- a. Comme toute similitude conserve le rapport des distances, alors (\mathcal{H}) et (\mathcal{H}') ont même excentricité.

D'où
$$e = \frac{JI}{JK} = 2$$
.

b. Asymptotes de (\mathcal{H}')

- $S(\Omega_1) = \Omega_1$. S(J) = J' où J' est le milieu de $[\Omega_1 K]$. Comme $(J\Omega_1)$ est une asymptote de (\mathcal{H}) alors $(J'\Omega_1)$ est une asymptote de (\mathcal{H}') .
- S(J) = J'.

 S(E) = E' où E' est le milieu du segment $[\Omega_1 B]$.

 Comme (EJ) est la seconde asymptote de (\mathcal{H}) alors (E'J') est la seconde asymptote de (\mathcal{H}') .

Sommets de (\mathscr{H}')

- S(A) = B. Comme A est un sommet de (\mathcal{H}) , alors B est un sommet de (\mathcal{H}') .
- Déterminons le second sommet de (\(\mathscr{H}'\)).
 \(S(J) = J'\).
 Comme \(J\) est le centre de (\(\mathscr{H}'\)), alors \(J'\) est le centre de (\(\mathscr{H}'\)).
 On en déduit que le second sommet de (\(\mathscr{H}'\)) est le point \(K'\), symétrique de \(B\) par rapport à \(J'\).

