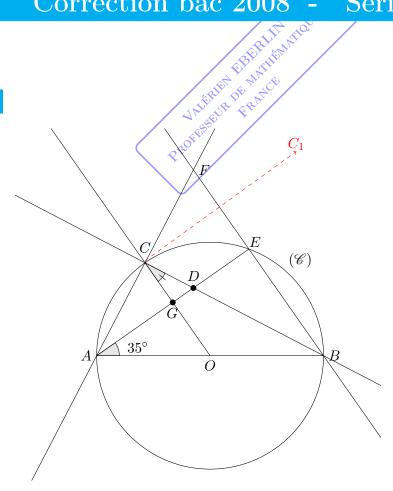
Correction bac 2008 Série C

Exercice 1



1 Les triangles ABC et ABE étant inscrits dans le cercle (\mathscr{C}) de diamètre [AB], sont alors rectangles respectivement en C et en E.

$$\overrightarrow{(\overrightarrow{ED},\overrightarrow{EB})} \equiv \overrightarrow{(\overrightarrow{EA},\overrightarrow{EB})} \equiv \frac{\pi}{2} \, [\pi].$$

$$\overrightarrow{(\overrightarrow{CD},\overrightarrow{CF})} \equiv \overrightarrow{(\overrightarrow{CB},\overrightarrow{CA})} \equiv \frac{\pi}{2} \, [\pi].$$

On en déduit que $(\overrightarrow{ED}, \overrightarrow{EB}) \equiv (\overrightarrow{CD}, \overrightarrow{CF}) [\pi]$.

D'où les points D, E, F et C sont cocycliques.

2 a. Dans le triangle ABE

O est le milieu de [AB].

G est le milieu de [AE].

DE MATHEMATICATES D'après le théorème des milieux, (OG)//(BE).

Dans le triangle AEF G est le milieu de [AE]. (GC)//(EF) car (OG)//(BE).

D'après la réciproque du théorème des milieux, C est le milieu de [AF].

Or $(BC) \perp (AF)$. On en déduit que (BC) est la médiatrice de [AF].

Donc BF = BA et le triangle ABF est isocèle en B.

|4|

- **b.** Comme BF = BA et $\overrightarrow{BF} \neq \overrightarrow{BA}$, alors il existe une rotation R, d'angle $(\overrightarrow{BF}, \overrightarrow{BA}) = 55^{\circ}$ et de centre B, qui transforme F en A.
- **a.** $S_{BF} \circ S_{OC}$ est la composée de deux symétries axiales d'axes parallèles. C'est donc une translation.
 - **b.** GE est la distance entre les axes (OC) et (BF). De plus, \overrightarrow{GE} est normal à (OC) (donc à (BF)).

On en déduit que le vecteur de T est $2\overrightarrow{GE} = \overrightarrow{AE}$.

a. $R \circ T = S_{BC} \circ S_{BF} \circ S_{OC} = S_{BC} \circ S_{OC}$. $g = R \circ T$ est la rotation de centre $\Omega = C$ et d'angle $\theta = 2 \times (\overrightarrow{CO}, \overrightarrow{CB})$.

Déterminons l'angle de la rotation $g = R \circ T$

Les angles $(\overrightarrow{CO}, \overrightarrow{CB})$ et $(\overrightarrow{BF}, \overrightarrow{BC})$ sont alternes-internes, formés par deux droites (OC) et (FB) parallèles, coupées par la sécante (BC).

On en déduit que $(\overrightarrow{CO}, \overrightarrow{CB}) = (\overrightarrow{BF}, \overrightarrow{BC}) = \frac{1}{2} \times 55^{\circ} = 27, 5^{\circ}.$

Donc $\theta = 55^{\circ}$.

- **b.** $g(C) = R \circ T(C) = R(C_1) = C$ (À Construire soigneusement).
- c. Les deux hauteurs (AE) et (BD) du triangle ABF sont sécantes en D. On en déduit que D est l'orthocentre du triangle ABF. Par conséquent (FD) est la troisième hauteur du triangle ABF.

Exercice 2

1 a. Soit $n \in \mathbb{N}^*$.

Notons \mathscr{P}_n la propriété : $V_n \equiv V_{n+1}$ [6].

Montrons que : $\forall n \in \mathbb{N}^*, \ \mathscr{P}_n$.

Initialisation

$$V_1 = 4V_0 - 6 = -2$$
 et $V_2 = 4V_1 - 6 = -14$.

On a bien $V_1 = V_2 + 6 \times 2$. Donc $V_1 \equiv V_2$ [6].

La propriété \mathcal{P}_1 est vérifiée.

<u>Hérédité</u>

Supposons \mathscr{P}_n c'est à dire supposons que $V_n = V_{n+1}$ [6].

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $V_{n+1} \equiv V_{n+2}$ [6].

On a $V_n \equiv V_{n+1}$ [6].

En multipliant par 4 les deux membres de l'égalité précédente, on a : $4V_n \equiv 4V_{n+1}$ [6].

En retranchant 6 aux deux membres de l'égalité précédente, on a : $4V_n - 6 \equiv 4V_{n+1} - 6$ [6] D'où $V_{n+1} \equiv V_{n+2}$ [6].

La propriété \mathscr{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{D}_n est vraie pour tout $n \in \mathbb{N}^*$.

b. Pour tout $n \in \mathbb{N}^*$, $V_{n+1} \equiv V_n$ [6].

Donc, modulo 6, la suite $(V_n)_{n\in\mathbb{N}^*}$ est périodique, de période 1.

a. $4^0 \equiv 1$ [6]. Le reste de la division euclidienne de 4^0 par 6 est 1.

 $4^1 \equiv 4 \, [6]$. Le reste de la division euclidienne de 4^1 par 6 est 4.

 $4^2 = 16 \equiv 4 \, [6]$. Le reste de la division euclidienne de 4^2 par 6 est 4.

Montrons par récurrence que : $\forall n \in \mathbb{N}^*, \quad 4^n \equiv 4 [6].$

Soit $n \in \mathbb{N}^*$.

Notons \mathscr{P}_n la propriété : $4^n \equiv 4$ [6]

<u>Initialisation</u>

Les propriétés \mathscr{P}_1 et \mathscr{P}_2 sont vérifiées (voir ci-dessus).

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $4^n \equiv 4 [6]$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $4^{n+1} \equiv 4 [6]$.

On a : $4^n \equiv 4 [6]$

Alors $4^n \times 4 \equiv 16 \, [6] \equiv 4 \, [6]$

D'où : $4^{n+1} \equiv 4 [6]$

La propriété \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

Donc:

Si n = 0, le reste de la division euclidienne de 4^0 par 6 est 1.

Si $n \in \mathbb{N}^*$, le reste de la division euclidienne de 4^n par 6 est 4.

b. Montrons par récurrence que : $\forall n \in \mathbb{N}, \ V_n = 4^n [6]$

Soit $n \in \mathbb{N}$.

Notons \mathscr{P}_n la propriété : $V_n = 4^n$ [6].

Initialisation

Comme $V_0 = 1$ et $1 \equiv 4^0$ [6], alors $V_0 \equiv 4^0$ [6].

La propriété \mathcal{P}_0 est vérifiée.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $V_n \equiv 4^n$ [6].

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $V_{n+1} \equiv 4^{n+1}$ [6].

On a $V_n \equiv 4^n [6]$

En multipliant les deux membres de l'égalité par 4, on a : $4V_n \equiv 4^{n+1}$ [6]

En retranchant 6 aux deux membres de l'égalité précédente, on a : $4V_n - 6 \equiv 4^{n+1} - 6$ [6]

Or
$$4V_n - 6 = V_{n+1}$$
 et $4^{n+1} - 6 \equiv 4^{n+1}$ [6].

On en déduit que $V_{n+1} \equiv 4^{n+1} [6]$

La propriété \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}$.

- **c.** D'après 2.a., $4^{1956} \equiv 4 \, [6]$ et d'après 2.b, $V_{1956} \equiv 4^{1956} \, [6]$. On en déduit que $V_{1956} \equiv 4 \, [6]$.
- **a.** $V_0 = 1$ et $V_1 \equiv V_2 \equiv \cdots \equiv V_n \equiv 4$ [6], alors $S_n \equiv (1 \pm 4n)$ [6]. Cela signifie que le reste de la division euclidienne de S_n par 6 correspond au reste de la division euclidienne de 1 + 4n par 6.

Étudions le reste de la division euclidienne de 1 + 4n par 6

- Si n=0, $S_0\equiv 1$ [6]. Le reste de la division euclidienne de S_0 par 6 est 1.
- Si $n=1, S_1\equiv 5$ [6]. Le reste de la division euclidienne de S_1 par 6 est 5.
- Si n=2, $S_2\equiv 9$ [6] $\equiv 3$ [6]. Le reste de la division euclidienne de S_2 par 6 est 3.
- Si n=3, $S_3\equiv 13$ [6] $\equiv 1$ [6]. Le reste de la division euclidienne de S_3 par 6 est 1.

Déduisons les restes suivant les valeurs de n

Soit $n \in \mathbb{N}$.

Alors n peut s'écrire n = 3k, n = 3k + 1 ou n = 3k + 2 avec $k \in \mathbb{Z}$.

On en déduit que :

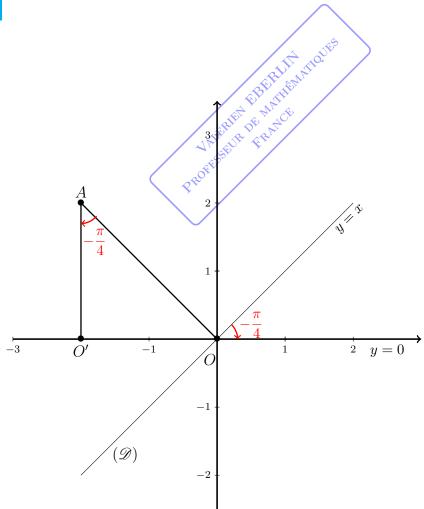
- Si n=3k, $S_{3k}\equiv 1+4\times 3k$ [6] $\equiv 1+12k$ [6] $\equiv 1$ [6]. Le reste de la division euclidienne de S_{3k} par 6 est 1.
- Si n = 3k + 1, $S_{3k+1} \equiv 1 + 4(3k+1)[6] \equiv 5 + 12k[6] \equiv 5[6]$. Le reste de la division euclidienne de S_{3k+1} par 6 est 5.
- Si n = 3k + 2, $S_{3k+2} \equiv 1 + 4(3k+2)[6] \equiv 9 + 12k[6] \equiv 3[6]$. Le reste de la division euclidienne de S_{3k+2} par 6 est 3.

1

b. $1956 = 3 \times 652$.

D'après 3. a., le reste de division euclidienne de S_{1956} par 6 est 1.

Problème



A

1. Soit O' le projeté orthogonal A sur la droite (O, \vec{i}) . Comme O est le projeté orthogonal de A sur la droite (\mathcal{D}) , alors S(O) = O'. D'où $\theta \equiv \overrightarrow{(AO, AO')}[2\pi] \equiv -\frac{\pi}{4}[2\pi]$ et $k = \frac{AO'}{AO} = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$

2. L'expression de la similitude S est donnée par : $z'-z_A=\frac{\sqrt{2}}{2}\,\mathrm{e}^{i(-\frac{\pi}{4})}(z-z_A)$ où $z_A = -2 + 2i$. D'où $z' = \left(\frac{1}{2} - \frac{1}{2}i\right)z - 2$.

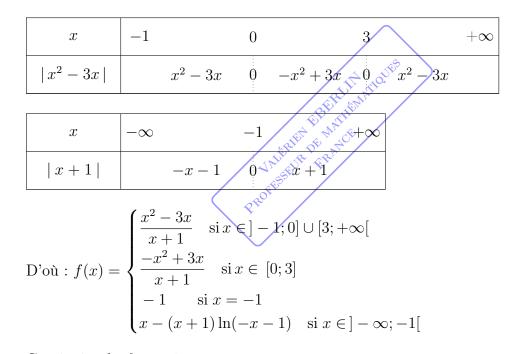
В

1. La fonction $x \mapsto \frac{|x^2 - 3x|}{x+1}$ est définie pour $x \ge -1$. La fonction $x \mapsto x - (x+1) \ln |x+1|$ est définie pour x < -1. Et f(-1) existe. Et f(-1) existe.

Donc $E_f = \mathbb{R}$.

2. Exprimons d'abord la fonction f en fonction des valeurs prises par les valeurs abso-

lues $|x^2 - 3x|$ et |x + 1|.



Continuité de
$$f$$
 en -1
$$\lim_{x\to -1_-} f(x) = \lim_{x\to -1_-} (x-(x+1)\ln(-x-1)) = \lim_{u\to 0_+} (-1-u+u\ln u) = -1$$
 où l'on a posé $u=-x-1$.

$$\lim_{x \to -1_+} f(x) = \lim_{x \to -1_+} \frac{x^2 - 3x}{x + 1} = +\infty$$

Comme $\lim_{x \to -1_{-}} f(x) \neq \lim_{x \to -1_{+}} f(x)$, alors la fonction f n'est pas continue en -1.

La fonction f est continue sur $]-\infty;-1[\cup]-1;+\infty[$.

Dérivabilité de f

- Dérivabilité de f en -1Comme la fonction f n'est pas continue en -1, alors elle n'est pas dérivable en -1.
- Dérivabilité de f en 0

$$\frac{\lim_{x \to 0_{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_{-}} \frac{x - 3}{x + 1} = -3.$$

$$\lim_{x \to 0_+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0_+} \frac{-x + 3}{x + 1} = 3.$$

Comme $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x} \neq \lim_{x\to 0_+} \frac{f(x)-f(0)}{x}$, alors la fonction f n'est pas dé-

• Dérivabilité de
$$f$$
 en $\frac{3}{x-3}$

$$\lim_{x\to 3_{-}} \frac{f(x)-f(3)}{x-3} = \lim_{x\to 3_{-}} \frac{-x}{x+1} = \frac{-3}{4}$$

$$\lim_{x\to 3_{+}} \frac{f(x)-f(3)}{x-3} = \lim_{x\to 3_{+}} \frac{x}{x+1} = \frac{3}{4}$$
Comme $\lim_{x\to 3_{-}} \frac{f(x)-f(3)}{x-3} \neq \lim_{x\to 3_{+}} \frac{f(x)-f(3)}{x-3}$, alors la fonction f n'est pas dérivable en $\frac{3}{x-3}$

rivable en 3.

3. La fonction f est dérivable sur $]-\infty;-1[\cup]-1;0[\cup]0;3[\cup]3;+\infty[$ et on a :

$$f'(x) = \begin{cases} \frac{(x-1)(x+3)}{(x+1)^2} & \text{si } x \in]-1; 0[\cup]3; +\infty[\\ -\frac{(x-1)(x+3)}{(x+1)^2} & \text{si } x \in]0; 3[\\ -\ln(-x-1) & \text{si } x \in]-\infty; -1[], \text{ which is the problem of the signes.} \end{cases}$$
le signes.

Tableau de signes.

				<u> </u>				
x	$-\infty$	-2	PRO	-1	0	1	3	$+\infty$
$\frac{(x-1)(x+3)}{(x+1)^2}$				_				+
$-\frac{(x-1)(x+3)}{(x+1)^2}$					+	0 -	-	
$-\ln(-x-1)$	_	0	+					
f'(x)	_	0	+	_	+	0 -	-	+

Tableau de variation de f.

lim
$$f(x) = \lim_{x \to -\infty} (x - (x+1)\ln(-x-1)) = \lim_{u \to +\infty} (u\ln u) \left(-\frac{1}{u\ln u} - \frac{1}{\ln u} + 1\right) = +\infty$$
 où l'on a posé $u = -x - 1$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 3x}{x + 1} = +\infty$$

x	$-\infty$		-2	_	1	0		1		3	$+\infty$
f'(x)		_	0	+	_		+	0	_	+	
f(x)	$+\infty$		-2	-1	$+\infty$	0		1		0	$+\infty$

4. $f(-4,6) \approx 0,011$ et $f(-4,5) \approx -0,11$.

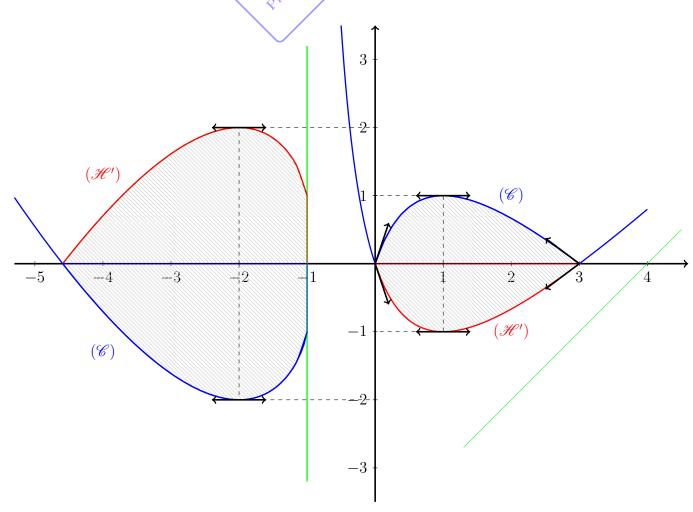
 $f(-4,6) \approx 0.011$ et $f(-4,5) \approx -0.11$. La fonction f est continue et strictement décroissante sur]-4,6; -4,5[.

De plus, f(-4,6)f(-4,5) < 0.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in]-4,6;-4,5[$ tel que $f(\alpha) = 0$.

Branches infinies

- $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(1 \ln|x+1| \frac{\ln|x+1|}{x} \right) = -\infty$. La courbe ($\mathscr C$) admet une direction asymptotique de direction (Oy) en $-\infty$.
 $\lim_{x \to -1_+} f(x) = \lim_{x \to -1_+} \frac{x^2 3x}{x+1} = +\infty$. La droite d'équation x = -1 est une asymptote
- verticale à la courbe (\mathscr{C}) vers -1_+ . $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x-3}{x+1} = 1. \lim_{x \to +\infty} (f(x) x) = \lim_{x \to +\infty} \frac{-4x}{x+1} = -4.$ La courbe (\mathscr{C}) admet une asymptote oblique d'équation y = x - 4 en $+\infty$.



- a. Voir sur la figure. **5**.

Soit g, la fonction associée à la courbe représentative (\mathcal{H}') . Alors g(x) = -f(x)pour tout $x \in]\alpha; -1[\cup [0; 3].$

D'où :
$$A_0 = \int_{\alpha}^{-1} (g(x) - f(x)) dx + \int_{0}^{3} (f(x) - g(x)) dx$$
$$= -2 \int_{\alpha}^{-1} f(x) dx + 2 \int_{0}^{3} f(x) dx$$
$$= -1 + \alpha^2 + 2 \int_{\alpha}^{-1} (x+1) \ln(-x-1) dx + 2 \int_{0}^{3} \frac{-x^2 + 3x}{x+1} dx$$

Calculons
$$\int_{\alpha}^{-1} (x+1) \ln(-x-1) dx$$

Pour cela, déterminons d'abord une primitive de la fonction : $x \mapsto (x+1)\ln(-x-1)$.

Si l'on choisit
$$\begin{cases} u(x) = \ln(-x - 1) \\ v'(x) = x + 1 \end{cases}$$
 alors on peut prendre
$$\begin{cases} u'(x) = \frac{1}{x + 1} \\ v(x) = \frac{x^2}{2} + x \end{cases}$$
 Il vient, en intégrant par parties :

Il vient, en intégrant par parties :

$$\int (x+1)\ln(-x-1) dx = \frac{x^2 + 2x}{2}\ln(-x-1) - \int \frac{x^2 + 2x}{2(x+1)} dx + K_0 \text{ où } K_0 \text{ est une constante}$$

$$= \frac{x^2 + 2x}{2}\ln(-x-1) - \frac{1}{2}\int (x+1-\frac{1}{x+1}) dx + K_0$$

$$= \frac{2(x+1)^2\ln(-x-1) - x^2 - 2x}{4} + K_1 \text{ où } K_1 \text{ est une constante}$$

Comme
$$\lim_{x \to -1_{-}} \frac{2(x+1)^{2} \ln(-x-1) - x^{2} - 2x}{4} = \frac{1}{4}$$
, on en déduit que
$$\int_{\alpha}^{-1} (x+1) \ln(-x-1) dx = \frac{1}{4} - \frac{2(\alpha+1)^{2} \ln(-\alpha-1) - \alpha^{2} - 2\alpha}{4}.$$

Calculons
$$\int_0^3 \frac{-x^2 + 3x}{x+1} dx$$
$$\frac{-x^2 + 3x}{x+1} = -x + 4 - \frac{4}{x+1}. \text{ D'où}:$$
$$\int_0^3 \frac{-x^2 + 3x}{x+1} dx = \int_0^3 \left(-x + 4 - \frac{4}{x+1}\right) dx$$
$$= \left[-\frac{x^2}{2} + 4x - 4\ln|x+1|\right]_0^3$$
$$= \frac{15 - 16\ln 2}{2}$$

D'où
$$A_0 = \frac{3\alpha^2 + 2\alpha + 29 - 32\ln 2 - 2(\alpha + 1)^2\ln(-\alpha - 1)}{2} \approx 13,95.$$

Remarque

Pour le calcul de l'intégrale $\int_{\alpha}^{-1} (x+1) \ln(-x-1) dx$, par intégration par parties, il n'est pas correct d'écrire :

$$\int_{\alpha}^{-1} (x+1) \ln(-x-1) \, dx = \left[\frac{x^2 + 2x}{2} \ln(-x-1) \right]_{\alpha}^{-1} - \int_{\alpha}^{-1} \frac{x^2 + 2x}{2(x+1)} \, dx.$$

En effet, la fonction $x \mapsto \frac{x^2 + 2x}{2} \ln(-x + 1)$ n'existe pas en -1. Cependant, en passant par le calcul global de la primitive de $(x + 1) \ln(-x - 1)$, on contourne ce problème.

a. Comme toute similitude de rapport k multiplie l'aire de la transformée par k^2 , la **6.** similitude S multiplie l'aire de transformée par $\left(\frac{\sqrt{2}}{2}\right)^2$

D'où
$$A_n = \frac{1}{2}A_{n-1} = \left(\frac{1}{2}\right)^2 A_{n-2} = \cdots = \left(\frac{1}{2}\right)^n A_0$$
.
b. La suite $(A_n)_n$ est une suite géométrique de raison $\frac{1}{2}$.

$$S_n = A_0 + A_1 + A_2 + \dots + A_n = \frac{A_0 \times (1 - (\frac{1}{2})^{n+1})}{1 - \frac{1}{2}} = 2A_0(1 - (\frac{1}{2})^{n+1})$$
c. $\lim_{n \to +\infty} S_n = 2A_0 \approx 27,89$ (arrondi au centième près).

