Correction bac 2007 - Série C

ANTERENT PERMITER ANTON

Exercice 1

1 Étude des variations de f_1

La fonction $t \mapsto \cos t$ est définie sur \mathbb{R} et est périodique, de période 2π . On peut réduire son domaine d'étude à l'intervalle $[-\pi;\pi]$.

De plus, f_1 est une fonction paire. Son domaine d'étude peut être à nouveau réduit à l'intervalle $[0; \pi]$.

Pour tout $t \in [0, \pi], f'_1(t) = -\sin t$.

t	0		π
$f_1'(t)$	0	-	0

D'où le tableau de variation :

t	0	π
$f_1'(t)$	0 –	0
$f_1(t)$	1	-1

Étude des variations de f_2

La fonction $t \mapsto \sin 2t + 2\sin t$ est définie sur \mathbb{R} et est périodique, de période 2π . On peut réduire son domaine d'étude à l'intervalle $[-\pi;\pi]$.

De plus, f_2 est une fonction impaire. Son domaine d'étude peut être à nouveau réduit à l'intervalle $[0; \pi]$.

Pour tout $t \in [0, \pi]$, $f_2'(t) = 2(\cos 2t + \cos t) = 4\cos(\frac{3t}{2})\cos(\frac{t}{2})$.

 f_2' s'annule sur $[0;\pi]$ si $t=\frac{\pi}{3}$ ou si $t=\pi.$

D'où le tableau de signes :

t	0		T 3 BERLINGTON	π
$\cos\left(\frac{3t}{2}\right)$		+	THE DE MARCE	
$\cos(\frac{t}{2})$		+	The spill of the state of the s	0
$f_2'(t)$		+	Price 0	0

D'où le tableau de variation:

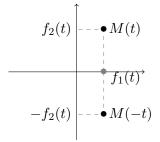
D ou ic tak	neau de variation.	
t	0	$\frac{\pi}{3}$ π
$f_2'(t)$	+	O Shirking the O
$f_2(t)$	0	3\sqrt{3}{2} Litter Litt

2 Notons pour $t \in \mathbb{R}$, M(t) le point de coordonnées $(f_1(t), f_2(t))$.

Pour tout $t \in \mathbb{R}$, M(t) existe et $M(t+2\pi) = M(t)$. Ce qui signifie qu'on obtient la courbe complète de f lorsque t décrit $[-\pi, \pi]$.

L'étude de f peut alors être effectuée sur l'intervalle $[-\pi, \pi]$.

D'autre part,
$$M(-t) = \begin{pmatrix} f_1(-t) \\ f_2(-t) \end{pmatrix} = \begin{pmatrix} f_1(t) \\ -f_2(t) \end{pmatrix}$$



Et la fonction $t \mapsto -t$ réalise une bijection de $[0, \pi]$ sur $[-\pi, 0]$.

Le domaine d'étude de f peut donc à nouveau être réduit à l'intervalle $[0, \pi]$.

Interprétation : on construit l'arc de f quand t décrit $[0,\pi]$, puis on obtient la courbe complète de f par réflexion d'axe (Oy).

3 Tableau de variation

t	$\frac{\pi}{3}$ π
$f_1'(t)$	0 - 0
$f_1(t)$	1
$f_2(t)$	$0 \qquad \frac{3\sqrt{3}}{2}$
$f_2'(t)$	+ 0

4

Tangentes parallèles à aux axes

Tangentes parallèles à l'axe (Ox) ROPRESELLE DE MARGENTE DE MAR

En les points $M(\frac{\pi}{3}) = \begin{pmatrix} \frac{1}{2} \\ \frac{3\sqrt{3}}{2} \end{pmatrix}$ et $M(\pi) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, la courbe admet une tangente A HARITANIA TIQUE parallèle à (Ox).

 $\bullet\,$ Tangentes parallèles à l'axe (Oy)

$$f_1'(t) = 0 \iff t = 0 \text{ et } t = \pi.$$

En les points $M(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $M(\pi) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, la courbe admet une tangente parallèle à (Oy).

Points d'intersections avec les axes

Points d'intersections avec l'axe (Oy)

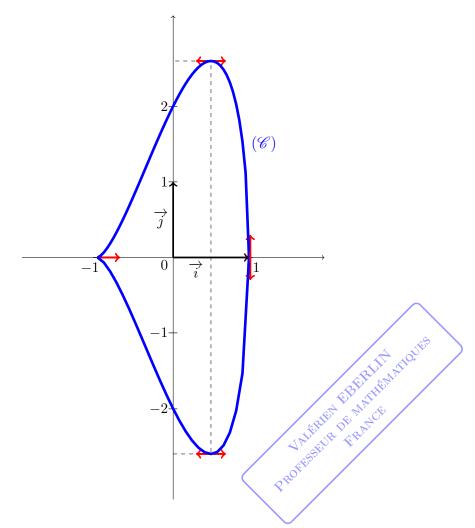
$$f_1(t) = 0 \iff t = \frac{\pi}{2}.$$

La courbe rencontre l'axe (Oy) au point $M(\frac{\pi}{2}) = {0 \choose 2}$

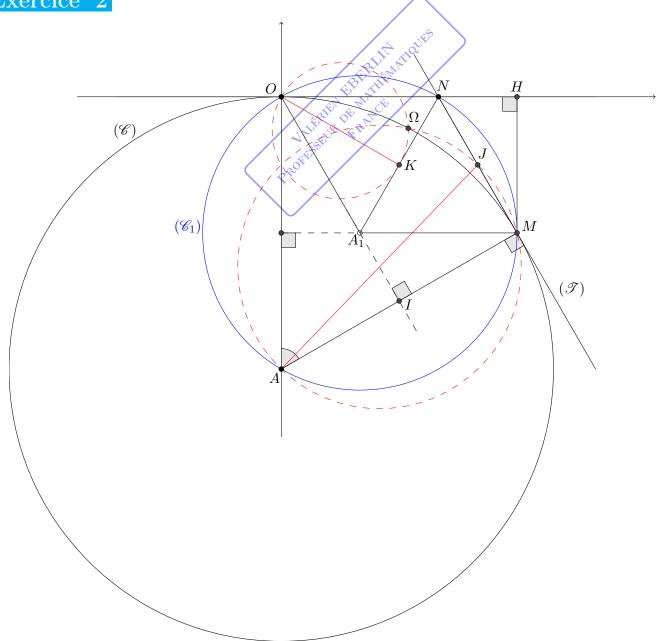
Points d'intersections avec l'axe (Ox)

$$f_2(t) = \sin(2t) + 2\sin(t) = 2\sin t(\cos t + 1) = 0 \iff t = 0 \text{ et } t = \pi.$$

La courbe rencontre l'axe (Ox) aux points $M(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $M(\pi) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$



Exercice 2



- **5** $(AO) \perp (NO)$ et $(AM) \perp (NM)$ alors $(\overrightarrow{AO}, \overrightarrow{AM}) \equiv (\overrightarrow{NO}, \overrightarrow{NM}) [\pi]$. Donc les points O, N, M et A appartiennent à un cercle (\mathscr{C}_1) . Le centre A_1 du cercle (\mathscr{C}_1) est le point d'intersection des médiatrices de [AO] et de [AM].
- 6 Le triangle AMO est équilatéral car c'est un triangle isocèle ayant un angle de 60°. Il en résulte que A_1 est également le centre de gravité de ce triangle.

 $\frac{\text{Angle et rapport de }S_1}{S_1(O)=O}.$ De plus, comme S_1 préserve les centres des cercles, alors $S_1(A)=A_1$.

D'où
$$k_1 = \frac{OA_1}{OA} = \frac{\frac{2}{3}OI}{OA} = \frac{2}{3}\sin(60^\circ) = \frac{\sqrt{3}}{3}$$

$$\theta_1 = \overrightarrow{(\overrightarrow{OA}, \overrightarrow{OA_1})} \equiv \frac{\pi}{6} [2\pi].$$

7 **a.** $(NH) \perp (OA)$ et $(NM) \perp (AM)$.

> Les angles $(\overrightarrow{NM}, \overrightarrow{NH})$ et $(\overrightarrow{AM}, \overrightarrow{AO})$ étant des angles aigus à côtés perpendiculaires, on en déduit que : $(\overrightarrow{NM}, \overrightarrow{NH}) \equiv (\overrightarrow{AM}, \overrightarrow{AO})[2\pi] \equiv \frac{\pi}{3}[2\pi].$

$$\overline{S_2(N)} = N \text{ et } S_2(M) = H.$$

Angle et rapport de
$$S_2$$

$$S_2(N) = N \text{ et } S_2(M) = H.$$
D'où $k_2 = \frac{NH}{NM} = \cos(\frac{\pi}{3}) = \frac{1}{2} \text{ et } \theta_2 = (\overrightarrow{NM}, \overrightarrow{NH}) \equiv \frac{\pi}{3} [2\pi].$

b. Les triangles NA_1M et NOA_1 étant équilatéraux, on a :

 $S_2 \circ S_1(A) = S_2(A_1) = J$ où J est le milieu du segment [NM].

 $S_2 \circ S_1(O) = S_2(O) = K$ où K est le milieu du segment $[NA_1]$.

c. $S_2 \circ S_1$ est une similitude plane directe d'angle $\frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}$.

Comme $S_2 \circ S_1(\Omega) = \Omega$ et $S_2 \circ S_1(O) = K$, alors $(\overrightarrow{\Omega O}, \overrightarrow{\Omega K}) \equiv \frac{\pi}{2} [2\pi]$. Donc Ω est un point du cercle de diamètre [OK].

De plus, comme $S_2 \circ S_1(\Omega) = \Omega$ et $S_2 \circ S_1(A) = J$, alors $(\overrightarrow{\Omega A}, \overrightarrow{\Omega J}) \equiv \frac{\pi}{2} [2\pi]$. Donc Ω est un point du cercle de diamètre [AJ].

D'où Ω est le point d'intersection du cercle de diamètre [OK] et du cercle de diamètre [AJ] et est tel que $(\overrightarrow{\Omega A}, \overrightarrow{\Omega J})$ soit orienté positivement.

<u>Problème</u>

1 Le coefficient dominant de p étant strictement positif, $\forall x \in \mathbb{R}, \ p(x) > 0 \text{ si } \Delta = a^2 - 4 < 0.$

Le tableau de signes de Δ donne :

a	$-\infty$		-2		2	$+\infty$
Δ		+	0	_	0 +	

Donc p > 0 si $a \in]-2; 2[$.

- **2** p admet une racine double si $\Delta = 0$ c'est à dire si a = 2 ou a = -2. Pour a=2, la racine double associée est x=1Pour a = -2, la racine double associée est x = -1
- Pour tout $x \in]0; +\infty[, g'_a(x) \neq \frac{p(x)}{x^2}.$ Comme $a \in [-2; 2]$, alors $p(x) \ge 0$ pour tout $x \in \mathbb{R}$. D'où $g'_a(x) = -\frac{p(x)}{r^2} \le 0$ pour tout $x \in \mathbb{R}$.

2 Tableau de variation de g_a pour $a \in [-2; 2]$.

Limite aux bornes
$$\lim_{x \to 0_+} g_a(x) = \lim_{x \to 0_+} \frac{1}{x} \left(ax \ln x + 1 - x^2 \right) = +\infty$$

$$\lim_{x \to 0_+} g_a(x) = \lim_{x \to 0_+} x \left(\frac{a \ln x}{x} + \frac{1}{x^2} - 1 \right) = -\infty$$

$$\lim_{x \to +\infty} g_a(x) = \lim_{x \to +\infty} x \left(\frac{a \ln x}{x} + \frac{1}{x^2} - 1 \right) = -\infty$$

Tableau de variation de g_a pour $a \in]-2;2$

$$g'_a < 0 \text{ pour } a \in]-2; 2[.$$

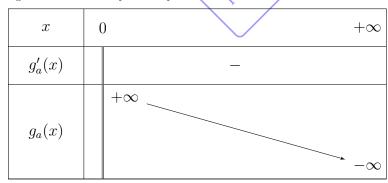


Tableau de variation de g_a pour a = -2.

$$g'_a < 0 \text{ pour } a = -2.$$

x	$0 + \infty$
$g_{-2}'(x)$	_
$g_{-2}(x)$	$+\infty$ $-\infty$

Tableau de variation de g_a pour a=2.

 $g'_a \leq 0$ pour a = 2 et s'annule pour x = 1.

x	$0 1 +\infty$
$g_2'(x)$	- 0 2112 REPORTES -
$g_2(x)$	+\infty \frac{1}{\sqrt{\text{Mathematical}}} \fr

3 Pour tout $a \in [-2, 2]$, la fonction g_a est strictement décroissante sur I =]0, 1[et $g_a(1) = 0$. Donc $g_a > 0$ sur I.

C 1 Tableau de variation de r.

Pour tout $x \in]0, +\infty[, r'(x) = \frac{2-x}{x}]$.

D'où le tableau de signes :

x	0	$+\infty$
r'(x)		+ JANESELLE OFFER

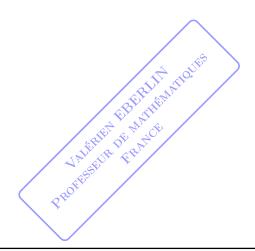
et le tableau de variation :

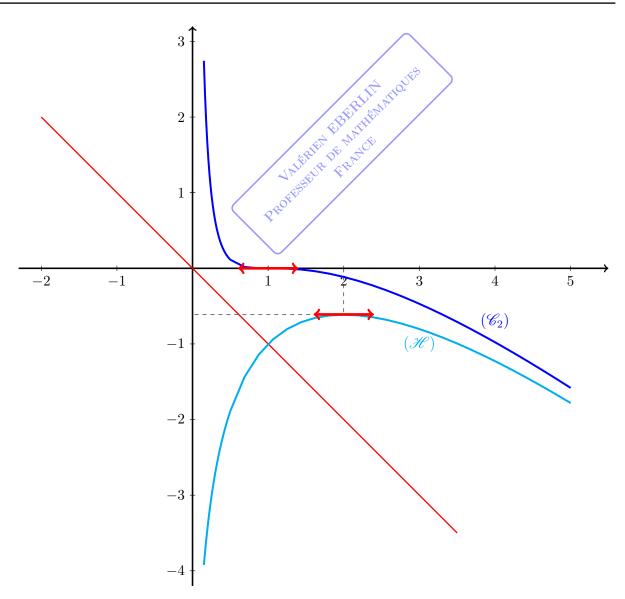
x	0	2	$+\infty$
r'(x)		+ 0 -	
r(x)	$-\infty$	$2 \ln 2 - 2$	$-\infty$

Comme $\lim_{x\to +\infty} g_2(x) - r(x) = \lim_{x\to +\infty} \frac{1}{x} = 0$, alors la courbe (\mathcal{H}) est asymptote à la courbe (\mathcal{C}_2)

Pour tout $x \in]0, +\infty[$, $g_2(x) - r(x) = \frac{1}{x} > 0$. La courbe (\mathscr{C}_2) est au dessus de la courbe (\mathscr{H}) sur $x \in]0, +\infty[$.

De plus, $\lim_{x\to +\infty} \frac{r(x)}{x} = -1$ et $\lim_{x\to +\infty} r(x) + x = +\infty$. La courbe (\mathscr{H}) présente une branche parabolique de direction asymptotique la droite d'équation y = -x en $+\infty$.





 \mathbf{D} |1|

 $\underline{\text{Montrons que } 0 < \frac{x \ln x}{x^2 - 1} < \frac{1}{2}.}$

Pour tout $x \in I$, $g_2(x) > 0 \implies \frac{2x \ln x + 1 - x^2}{x} > 0$ $\implies 2x \ln x + 1 - x^2 > 0$ puisque x > 0 $\implies 2x \ln x > x^2 - 1$

En divisant les deux membres de la dernière inégalité obtenue par $2(x^2-1)$ (qui est strictement négatif sur I), il en résulte que $\frac{x \ln x}{x^2 - 1} < \frac{1}{2}$.

D'autre part, comme $\ln x < 0$ et $x^2 - 1 < 0$ pour tout $x \in I$, alors $\frac{x \ln x}{x^2 - 1} > 0$ pour tout $x \in I$.

D'où $0 < \frac{x \ln x}{x^2 - 1} < \frac{1}{2}$ pour tout $x \in I$.

Montrons que $0 < f'(x) < \frac{1}{2}$

Soit F une primitive de la fonction $t \mapsto \frac{t \ln t}{t^2 - 1}$, alors f(x) = F(x) + k où k est une constante.

D'où
$$f'(x) = F'(x) = \frac{x \ln x}{x^2 - 1}$$
. Il en résulte que $0 < f'(x) < \frac{1}{2}$.

Montrons que
$$0 < f(x) < \frac{1}{2}$$
.

$$\forall t \in I, \quad 0 < \frac{t \ln t}{t^2 - 1} < \frac{1}{2}$$

 $\frac{\text{Montrons que }0 < f(x) < \frac{1}{2}}{\forall \, t \in I, \quad 0 < \frac{t \ln t}{t^2 - 1} < \frac{1}{2}}$ Par passage à l'intégrale, $0 < \int_0^x \frac{t \ln t}{t^2 - 1} dt < \int_0^x \frac{1}{2} dx$ pour tout $x \in]0\,;\,1[$

D'où
$$0 < f(x) < \frac{1}{2}x < \frac{1}{2}$$
.

2 Posons $\varphi(x) = h(x) - x$.

Pour tout
$$x \in I$$
, $\varphi'(x) = h'(x) - 1 = \frac{x \ln x}{x^2 - 1} - 1$.

Signe de φ'

Comme
$$0 < \frac{x \ln x}{x^2 - 1} < \frac{1}{2}$$
, alors $-1 < \frac{x \ln x}{x^2 - 1} - 1 < -\frac{1}{2}$. D'où $-1 < \varphi'(x) < -\frac{1}{2}$.

On en déduit que φ est strictement décroissante sur I.

Tableau de variation

x	0 1	L
$\varphi'(x)$	_	
$\varphi(x)$		

Calculons les limites aux bornes

Comme pour tout $x \in I$, h(x) > 0, alors $\varphi(x) > -x$.

Par passage à la limite, $\lim_{x\to 0_+} \varphi(x) \ge \lim_{x\to 0_+} -x$. Donc $\lim_{x\to 0_+} \varphi(x) \ge 0$.

D'autre part, comme pour tout $x \in I$, $h(x) < \frac{1}{2}$, alors $\varphi(x) < \frac{1}{2} - x$.

Par passage à la limite, $\lim_{x \to 1_{-}} \varphi(x) \le \lim_{x \to 1_{-}} \left(\frac{1}{2} - x\right) = -\frac{1}{2}$. Donc $\lim_{x \to 1_{-}} \varphi(x) < 0$.

Montrons que h admet un point fixe x_0

La fonction φ est continue sur I (puisque dérivable sur I), strictement décroissante sur I.

De plus,
$$\lim_{x\to 0_+} \varphi(x) \ge 0$$
 et $\lim_{x\to 1} \varphi(x) < 0$.

D'après le théorème des valeurs intermédiaires, il existe un unique réel $x_0 \in I$ tel que $\varphi(x_0) = 0$ c'est à dire $h(x_0) \rightleftharpoons x_0$.

3 a) Notons \mathcal{P}_n , la propriété : $0 < u_n < \frac{1}{2}$.

Montrons par récurrence que : $\forall n \in \mathbb{N}, \ \mathscr{P}_n$.

Initialisation

$$u_0 = \frac{1}{3} \in I$$
. D'où $0 < u_0 < \frac{1}{2}$

Donc la propriété \mathcal{P}_0 est vérifiée.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $0 < u_n < \frac{1}{2}$.

Montrons \mathcal{P}_{n+1} c'est à dire montrons que : $0 < u_{n+1} < \frac{1}{2}$.

On a :
$$0 < u_n < \frac{1}{2}$$
.

Par définition de la fonction h, d'après D.2., $0 < h(u_n) < \frac{1}{2}$.

D'où
$$0 < u_{n+1} < \frac{1}{2}$$
.

La propriété \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout n.

Montrons que
$$|u_{n+1} - x_0| \le \frac{1}{2} |u_n - x_0|$$

Soit $n \in \mathbb{N}$.

h est continue et dérivable sur I.

De plus, $|h'(x)| < \frac{1}{2}$ pour tout $x \in I$.

D'après le théorème de l'inégalité des accroissements finis, on a :

$$\forall x \in I, \ \forall y \in I, \ |h(x) - h(y)| \le \frac{1}{2}|x - y|$$

Comme $x_0 \in I$ et $u_n \in I$, on peut appliquer l'inégalité précédente en $x = u_n$ et $y = x_0$.

On a alors:

$$|h(u_n) - h(x_0)| \le \frac{1}{2}|u_n - x_0|$$

Or $h(u_n) = u_{n+1}$ par définition de la suite (u_n) et $h(x_0) = x_0$.

On en déduit que : $\forall n \in \mathbb{N}, |u_{n+1} - x_0| \leq \frac{1}{2} |u_n - x_0|$.

b) Soit \mathscr{P}_n , la propriété $|u_n - x_0| \le \left(\frac{1}{2}\right)^n |u_0 - x_0|$.

Montrons par récurrence que : $\forall n \in \mathbb{N}^*, \mathscr{P}_n$.

Initialisation

D'après 3. a., $|u_1 - x_0| \le \frac{1}{2} |u_0 - x_0|$.

D'où, \mathcal{P}_1 est vérifiée.

Hérédité

Supposons \mathscr{P}_n c'est à dire supposons que $|u_n - x_0| \le \left(\frac{1}{2}\right)^n |u_0 - x_0|$.

Montrons \mathscr{P}_{n+1} c'est à dire montrons que $|u_{n+1} - x_0| \le \left(\frac{1}{2}\right)^{n+1} |u_0 - x_0|$.

D'après 3. a., $|u_{n+1}-x_0| \leq \frac{1}{2}|u_n-x_0|$ et par hypothèse de récurrence, $|u_n-x_0| \leq \left(\frac{1}{2}\right)^n |u_0-x_0|$.

Ainsi,
$$|u_{n+1} - x_0| \le \frac{1}{2} |u_n - x_0| \le \frac{1}{2} (\frac{1}{2})^n |u_0 - x_0| = (\frac{1}{2})^{n+1} |u_0 - x_0|.$$

La propriété \mathcal{P}_{n+1} est vérifiée.

Conclusion

D'après le principe de récurrence, la propriété \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

- c) $\forall n \in \mathbb{N}, \quad 0 \le |u_n x_0| \le \left(\frac{1}{2}\right)^n |\frac{1}{3} x_0|.$
- Passage à la limite, $0 \le \lim_{n \to +\infty} |u_n x_0| \le \lim_{n \to +\infty} |u_n x_0| \le \lim_{n \to +\infty} (\frac{1}{2})^n |\frac{1}{3} x_0| = 0$ Par conséquent $\lim_{n \to +\infty} |u_n x_0| = 0$ et donc $\lim_{n \to +\infty} |u_n x_0| = 0$ et donc $\lim_{n \to +\infty} |u_n x_0| = 0$. $0 < x_0 < 1$.
 Alors $-\frac{2}{3} < \frac{1}{3} x_0 < \frac{1}{3}$. D'où la majoration $|\frac{1}{3} x_0| < \frac{2}{3}$. d) $0 < x_0 < 1$. Ainsi, $|u_n - x_0| \le \left(\frac{1}{2}\right)^n \left|\frac{1}{3} - x_0\right| < \left(\frac{1}{2}\right)^n \frac{2}{3}$. Déterminons le plus petit entier n_0 tel que $\left(\frac{1}{2}\right)^{n_0} \frac{2}{3} \le 10^{-2}$. Par croissance du logarithme, on a $-n_0 \ln 2 + \ln 2 - \ln 3 \le -2 \ln 10$. D'où $n_0 \ge \frac{2 \ln 10 + \ln 2 - \ln 3}{\ln 2} (\approx 6,059).$ Donc $n_0 = 7$.

