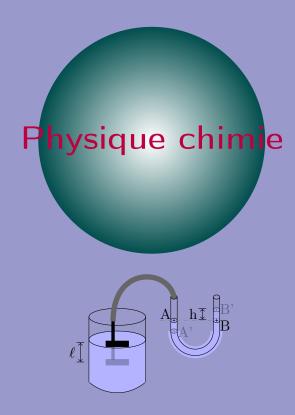
## Annales du bac


## Physique Chimie

## Série C



Valérien Eberlin

Professeur de mathématiques - France



- Des corrigés clairs et détaillés
- ✓ Des hyperliens pour une meilleure navigation interne en pdf

# SOMMAIRE SOMMAIRE SOMMAIRE SOMMAIRE SOMMAIRE SOMMAIRE SOMMAIRE

| 1              | Sujet bac C 2009                                                                                               |
|----------------|----------------------------------------------------------------------------------------------------------------|
| 2              | Sujet bac C 2010page 2                                                                                         |
| 3              | Sujet bac C 2011page 6                                                                                         |
| 4              |                                                                                                                |
| 5              | Sujet bac C 2013                                                                                               |
| 6              | Sujet bac C 2014                                                                                               |
| 7              | Sujet bac C 2015                                                                                               |
| 8              | Sujet bac C 2016                                                                                               |
|                | Sujet bac C 2017                                                                                               |
|                | Sujet bac C 2018                                                                                               |
|                | Sujet bac C 2019                                                                                               |
|                | Dujet bac 0 2019page 00                                                                                        |
| 14             | Corrigé bac C 2009                                                                                             |
| 15             | Corrigé bac C 2010                                                                                             |
|                | Corrigé bac C 2011                                                                                             |
|                | Corrigé bac C 2012                                                                                             |
|                | Corrigé bac C 2013                                                                                             |
|                | Corrigé bac C 2014                                                                                             |
|                | Corrigó has C 2015                                                                                             |
|                | Corrigé bac C 2016                                                                                             |
| 22             | Corrigé bac C 2017page 39                                                                                      |
| 23             | Corrigé bac C 2018                                                                                             |
| $\frac{1}{24}$ | Corrigé bac C 2019                                                                                             |
|                | Corrigé bac C 2016 page ??  Corrigé bac C 2017 page 39  Corrigé bac C 2018 page 49  Corrigé bac C 2019 page 58 |

TIT TIQUE

## Sujet bac 2010 - Série C

➤ Voir le corrigé. ► Retour au sommaire. ✓ Voir le corrigé.

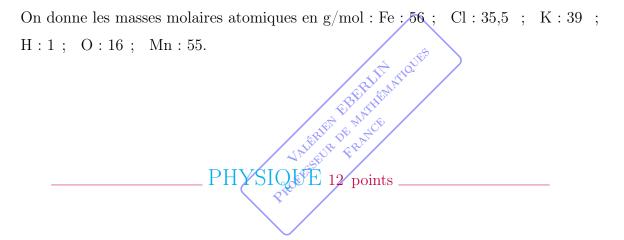
CHIME 8 points.

#### Exercice 1

On fait réagir totalement de la limaille de fer de masse m=16,8 g avec une solution d'acide sulfurique dilué de volume V=500 mL. On obtient une solution S.

- a. Écrire les demi-équations redox et l'équation bilan de la réaction.
  - b. Quel est le volume de gaz dégagé dans les C.N.T.P.?
  - $\mathbf{c}$ . Quelle est la concentration de la solution S?
- 2 La solution S est utilisée pour doser une solution de bichromate de potassium  $(2 \, \text{K}^+ + \text{Cr}_2\text{O}_7^{2^-})$  de volume égal à  $10 \, \text{cm}^3$  en milieu acide. Pour atteindre l'équivalence, il a fallu utiliser un volume égal à  $20 \, \text{mL}$  de solution S.
  - a. Ecrire l'équation bilan de la réaction.
  - b. Déterminer la concentration molaire volumique de la solution de bichromate.

On donne, en g/mol, les masses molaires atomiques: H:1; O:16; Fe:56.


Le volume molaire  $V_m = 22,4$  L/mol dans les C.N.T.P.

 ${\rm Les\ couples\ redox: Fe^{2-}/Fe\ ;}\ \ H_3O^+/H_2\ ;\ \ {\rm Cr_2O_7}^{2-}/{\rm Cr}^{3+}.$ 

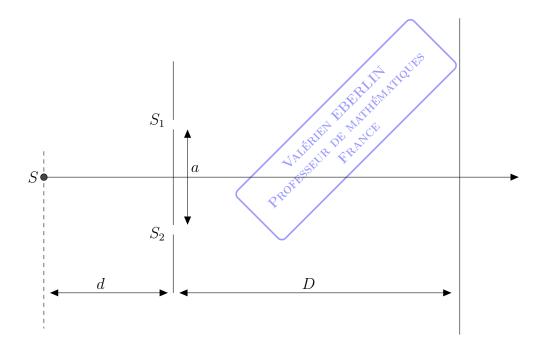
#### Exercice 2

On prépare une solution d'ions fer II (Fe<sup>2+</sup>) par action d'une solution d'acide chlorhydrique  $(H_3O^+ + Cl^-)$  avec du fer.

- 1 Quels sont les couples redox en présence?
- Quelle masse de fer faut-il utiliser pour préparer un litre de solution d'ions fer II de concentration molaire volumique 0,1 mol $\cdot$ L $^{-1}$
- On oxyde tous les ions fer II formés en milieu acide par une solution de permanganate de potassium  $(K^+ + MnO_4^-)$ . Les couples intervenant dans cette réaction sont :  $Fe^{3+}/Fe^{2+}$  et  $MnO_4^-/Mn^{2+}$ .
  - a. Écrire l'équation bilan de la réaction d'oxydoréduction.
  - **b.** Quelle masse de permanganate de potassium (KMnO<sub>4</sub>) supposé anhydre faut-il utiliser?



#### Exercice 1


- Une bobine de résistance R et d'inductance L est alimentée par un générateur de tension continue  $U_1 = 6$  V. Elle est alors traversée par un courant d'intensité efficace  $I_1 = 0, 3$  A. Déterminer la résistance R de la bobine.
- 2 On alimente ensuite la bobine par une tension sinusoïdale de valeur efficace 24 V et de fréquence 50 Hz. L'intensité efficace du courant vaut alors 0,12 A.

Déterminer :

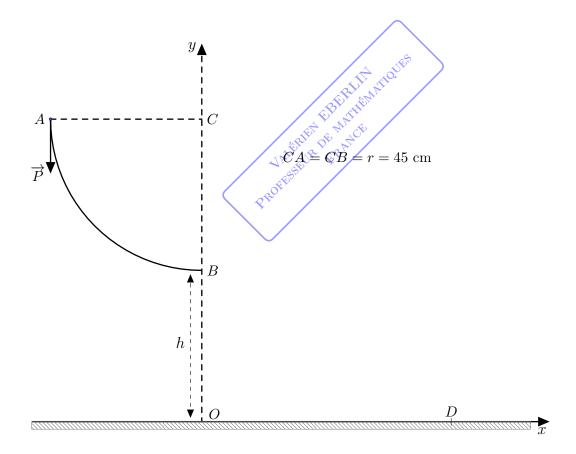
- a. l'impédance de la bobine.
- **b.** l'inductance de la bobine.
- 3 On monte en série avec la bobine, un condensateur de capacité  $C=5\,\mu\mathrm{F}$ . L'ensemble est soumis à la tension sinusoïdale précédente.
  - a. Déterminer l'impédance de l'association.
  - **b.** Quelle est l'intensité efficace du courant?
  - c. Quelle est la phase de l'intensité par rapport à la tension aux bornes de l'association?

#### Exercice 2

On a réalisé l'expérience des interférences lumineuses avec le dispositif des fentes de Young. La distance entre la source S monochromatique et le plan des fentes  $S_1$  et  $S_2$  est d=50 cm. La distance entre les fentes est a=3 mm. L'ecran est placé à la distance D=2 m du plan des fentes.



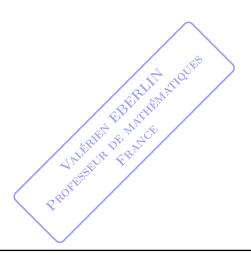
1 La distance entre la 6<sup>ème</sup> frange brillante située d'un côté de la frange centrale et la 6<sup>ème</sup> frange brillante située de l'autre côté est l = 4,8 mm.


Déterminer la longueur d'onde  $\lambda_1$ .

- 2 La source S émet une lumière monochromatique de longueur d'onde  $\lambda_2 = 0,60 \,\mu\text{m}$ . On la déplace verticalement vers  $S_1$  de y=2,5 mm. On constate un déplacement vertical xdu système de franges sur l'écran.
  - a. Établir l'expression de la différence de marche en fonction de y, x, D, d et a.
  - **b.** Déterminer la nouvelle position de la frange centrale.
  - c. Dire de combien et dans quel sens se déplace le système de franges.
- 3 Pour ramener le système de franges à sa position initiale, on se propose d'utiliser une lame de verre.
  - a. Devant quelle frange doit-on placer la lame?
  - **b.** Déterminer l'épaisseur e de la lame. Indice de réfraction de la lame n = 1, 5.

#### Exercice 3

VALUEBRE DE ALATICA ARIQUES


20 FEB SEIDE DE ALATICA DE ALATON DE Un solide ponctuel de masse m glisse sans frottement sur une piste circulaire dont le profil est représenté ci-après.



Le solide part du point A avec une vitesse nulle.

- 1 Déterminer la valeur de la vitesse au point B.
- Après le point B, le solide quitte la piste. On considère qu'il part de B avec une vitesse horizontale de valeur  $V_0 = 3$  m/s. Il atteint le sol au point D.
  - **a.** Établir dans le repère (O, x, y), les équations horaires du mouvement du solide entre B et D.
  - **b.** En déduire l'équation cartésienne de la trajectoire.
  - c. Calculer la durée du mouvement entre O et D sachant que h=0,8 m.
  - **d.** Avec quelle vitesse le solide arrive-t-il au sol?

On prendra  $g \approx 10 \,\mathrm{m \cdot s}^{-2}$ .



## Sujet bac 2011 - Série C

▶ Voir le corrigé.

▶Retour au sommaire.

CHIME 8 points

#### Exercice 1

On mélange dans plusieurs ampoules 3,7 g d'acide propanoïque ( $\rm CH_3-CH_2COOH$ ) et 1,6 g de méthanol ( $\rm CH_3-OH$ ). On scelle les ampoules et on les place dans une étuve à 50°C.

Au bout de 24 heures, on constate que la masse d'acide propanoïque après la réaction reste constante et égale à 1,23 g par ampoule.

- a. Quelle réaction chimique a eu lieu dans les ampoules?
  - b. Donner ses caractéristiques.
- a. Écrire l'équation-bilan de cette réaction.
  - b. Donner le nom du composé organique formé.
- 3 Calculer la quantité de matière (nombre de moles) du composé organique formé à l'équilibre.
- **a.** Calculer le rendement de cette réaction.
  - b. Comment pourrait-on obtenir le même résultat expérimental en moins de temps?

On donne en  $g \cdot \text{mol}^{-1}$ : C=12; O=16; H=1.

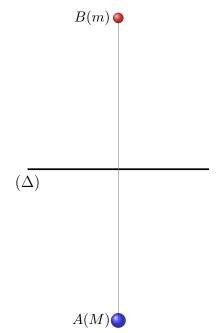
#### Exercice 2

Au cours d'une séance de travaux pratiques, le professeur demande à un élève de préparer une solution  $S_0$  d'ions  $\mathrm{Fe^{2+}}$  en partant d'une masse m=13,9 g de sulfate fer II hydraté  $(\mathrm{FeSO_4}\,,7\,\mathrm{H_2O})$  qu'il dissout dans l'eau pure pour obtenir  $500\,\mathrm{cm^3}$  de solution.

- 1 Calculer la concentration molaire théorique  $C_0$  de la solution  $S_0$  obtenue.
- Afin de vérifier le travail effectué, le professeur demande à un autre élève de déterminer la concentration de la solution obtenue par dosage à l'aide d'une solution de permanganate de potassium (K<sup>+</sup> + MnO<sub>4</sub><sup>-</sup>), de concentration molaire 0,04 mol·L<sup>-1</sup>.
  - a. Écrire l'équation-bilan de la réaction qui a lieu.
  - b. Sachant que  $11 \text{ cm}^3$  de la solution de permanganate de potassium ont été nécessaires pour doser  $20 \text{ cm}^3$  de la solution d'ion  $\text{Fe}^{2+}$ , déterminer la concentration molaire volumique C de la solution d'ion  $\text{Fe}^{2+}$ .

c. En déduire l'incertitude relative sur la concentration  $C_0$ .

On rappelle que les couples redox en présence sont :  $Fe^{3+}/Fe^{2+}$  et  $MnO_4^-/Mn^{2+}$ . On donne en  $g \cdot mol^{-1}$  : Fe=56 ; S=32 ; H=1.


PHYSIQUE 12 points

#### Exercice 1

AB est une tige rigide de masse négligeable, de milieu O, de longueur AB=2L=80 cm.

AB peut osciller dans le plan vertical autour d'un axe  $(\Delta)$  horizontal et passant par le point O. En A, on a fixé un solide de masse M et en B un solide de masse m (ces deux solides sont ponctuels).

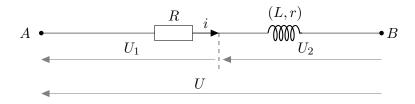
On donne : M = 300 g; m = 100 g et  $g = 10 \text{ m/s}^2$ .



- **a.** Calculer le moment d'inertie du système ainsi constitué par rapport à l'axe  $(\Delta)$ .
  - **b.** Donner la position G du centre d'inertie du système.
  - c. On écarte ce système d'une faible amplitude de la position d'équilibre et on l'abandonne sans vitesse initiale.
    - c1. Établir l'équation différentielle du pendule ainsi constitué.
    - **c2.** En déduire la période du mouvement. Faire l'application numérique.
- 2 Le pendule est écarté de sa position d'équilibre d'un angle  $\alpha = 60^{\circ}$  et abandonné sans vitesse initiale.
  - a. En utilisant le théorème de l'énergie cinétique, calculer la vitesse angulaire du pendule au passage à la position d'équilibre.
  - b. En déduire la vitesse linéaire de A à cette position.

#### Exercice 2

Dans le dispositif d'Young, la source S émet une radiation lumineuse de longueur d'onde  $\lambda$  qui éclaire les fentes  $S_1$  et de  $S_2$  distances de  $a=7.10^{-1}$  mm. On observe le phénomène d'interférences sur un écran situé à une distance D=1 m du plan des fentes.


- 1 Comment appelle-t-on la zone où l'on observe ce phénomène?
- 2 Sur l'écran, le milieu de la  $7^{\text{ème}}$  frange brillante est situé à x=4,2 mm du milieu de la frange centrale.

Calculer:

- **a.** L'interfrange *i*.
- **b.** La longueur d'onde  $\lambda$  de la radiation.
- 3 La source S émet maintenant deux radiations, l'une de longueur d'onde  $\lambda_1 = 0,420 \,\mu\text{m}$  et l'autre de longueur d'onde inconnue  $\lambda_2$ .
  - a. Décrire le phénomène observé sur l'écran.
  - b. Sur l'écran, le milieu de la  $8^{\text{ème}}$  frange brillante de la radiation de longueur d'onde  $\lambda_1$  coïncide avec le milieu de la  $7^{\text{ème}}$  frange brillante de la radiation de longueur d'onde  $\lambda_2$ . Calculer  $\lambda_2$ .
  - c. Calculer la distance entre deux coïncidences successives.

#### Exercice 3

On se propose de déterminer la résistance r et l'inductance L d'une bobine. Pour cela, on monte en série un conducteur ohmique de résistance  $R=7\,\Omega$  et la bobine.



L'ensemble est alimenté par une tension sinusoïdale de fréquence  $N=50~\mathrm{Hz}$  et de valeur efficace  $U=24~\mathrm{V}$ . On mesure les tensions efficaces  $U_1$  et  $U_2$  respectivement aux bornes du conducteur ohmique et aux bornes de la bobine.

On obtient :  $U_1 = 8 \text{ V et } U_2 = 19,6 \text{ V}.$ 

- **a.** Donner les expressions et calculer les impédances  $Z_1$  du conducteur ohmique,  $Z_2$  de la bobine et Z du circuit.
  - **b.** En déduire r et L.
- 2 On ajoute en série dans le circuit précédent un condensateur de capacité C. Le circuit étant capacitif :
  - a. Quelle doit être la valeur de C pour que l'intensité efficace soit la même que dans la question 1. La tension n'étant pas modifiée ainsi que la fréquence.
  - b. Exprimer la phase  $\varphi$  de la nouvelle tension instantanée en fonction de L,  $\omega$ , R et r et en déduire  $\varphi$ .
  - c. Construire le diagramme de Fresnel correspondant.

## Sujet bac 2012 - Série C

▶ Voir le corrigé. ▶

▶ Retour au sommaire.

CHIME 8 points \_\_\_\_\_

#### Exercice 1 (Noyau atomique - Radioactivité)

Le polonium  $^{210}_{84}$ Po, noyau instable, se désintègre suivant le mode  $\alpha$  en donnant le noyau de plomb (Pb) dans son état fondamental.

- 1 Calculer, en MeV, l'énergie de liaison par nucléon du noyau de polonium.
- 2 Écrire l'équation-bilan de la réaction de désintégration d'un noyau de polonium en précisant les lois de conservation utilisées.
- 3 Calculer en MeV, l'énergie libérée lors de cette désintégration.
- La période du nucléide  $^{210}_{84}$ Po est T=138 jours. Un échantillon de polonium 210 a une masse initiale  $m_0=20\,\mathrm{g}$ .
  - a. Calculer le nombre  $N_0$  de noyaux de polonium 210 correspondant.
  - **b.** Calculer la masse de polonium disparu au bout de 414 jours.

#### On donne:

```
m(\text{Po}) = 209,9369 \,\mu ; m(\text{Pb}) = 205,9296 \,\mu ; m(\text{He}) = 4,0015 \,\mu. 
 1 \,\mu = 931,5 \,\text{Mev/C}^2 ; \aleph = 6,02.10^{23} \,\text{mol}^{-1} ; 
 Masse proton : m_p = 1,00727 \,\mu ; c = 3.10^8 \,\text{m} \cdot \text{s}^{-1}, 
 Masse neutron : m_n = 1,00866 \,\mu ; M(\text{Po}) = 210 \,\text{g} \cdot \text{mol}^{-1}.
```

#### Exercice 2 (Couple Acide/Base dans l'eau)

La méthanamine  $CH_3NH_2$  est une base dont l'acide conjugué est l'ion méthanammonium  $CH_3NH_3^+$ .

- 1 Écrire l'équation de la réaction de la méthanamine sur l'eau
- On prépare un mélange contenant 20 cm<sup>3</sup> d'une solution de méthanamine de concentration  $C_1 = 0, 1 \,\text{mol} \cdot \text{L}^{-1}$  et 10 cm<sup>3</sup> d'une solution de chlorure de mathanammonium (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup> + Cl<sup>-</sup>) de concentration  $C_2 = 0, 2 \,\text{mol} \cdot \text{L}^{-1}$ . Le pH de la solution obtenue est 10,6.
  - a. Recenser les espèces chimiques présentes dans la solution.
  - **b.** Calculer la concentration molaire de chaque espèce.

- c. En déduire le pKa du couple CH<sub>3</sub>NH<sub>3</sub><sup>+</sup> / CH<sub>3</sub>NH<sub>2</sub>.
- 3 La pKa du couple du couple NH<sub>4</sub><sup>+</sup> / NH<sub>3</sub> vaut 9,2. Laquelle des deux bases CH<sub>3</sub>NH<sub>2</sub> et NH<sub>3</sub> est la plus forte? Justifier.

PHYSIQUE 12 points

#### Exercice 1 (Dynamique)

Un camion dont la masse totale a pour valeur M=7 tonnes démarre sur une route rectiligne et horizontale. Il atteint une vitesse de 60 km/h en 4 min et continue ensuite à une vitesse constante.

Dans cette question et toutes celles qui suivent, on admettra que l'ensemble des forces de frottement et de résistance de l'air est équivalent à une force unique opposée à la vitesse, d'intensité constante  $f=500~\rm N.$ 

- 1 Calculer l'intensité de la force de traction développée par le moteur :
  - a. Au cours du démarrage (le mouvement étant alors supposé rectiligne et uniformément accéléré).
  - **b.** Quand le mouvement est rectiligne et uniforme.
- 2 Pour arrêter le camion, le chauffeur débraie, supprimant ainsi la liaison entre le moteur et les roues motrices pour annuler la force de traction, et en même temps il serre les freins. Le camion, qui roulait à la vitesse de 60 km/h, s'arrête sur un parcourt de 200 m.

Calculer:

- a. L'intensité de la force de freinage.
- **b.** Le temps mis par le camion pour s'arrêter.

#### Exercice 2 (Propagation des ondes)

L'extrémité O d'une corde vibrante est animée d'un mouvement sinusoïdal dont l'équation est :  $y_0(t) = 2.10^{-2} \sin 200\pi t$ .

- 1 En déduire la fréquence et l'amplitude du mouvement.
- 2 La distance qui sépare deux points successifs qui vibrent en opposition de phase est  $d=20\,\mathrm{cm}$ .

Calculer:

- a. La longueur d'onde.
- **b.** La vitesse de propagation des ondes
- 3 Soit M le premier point qui vibre en quadrature de phase avec la source O.
  - a. Déterminer la distance x par rapport à la source O.
  - **b.** Établir l'équation horaire du point M.
  - c. Représenter graphiquement dans un même système d'axes  $y_0(t)$  et  $y_M(t)$ .

#### Exercice 3 (Courant alternatif)

Un circuit électrique est constitué d'un condensateur ohmique de résistance R et d'une bobine d'inductance L et de résistance négligeable.

- On alimente ce circuit sous une tension continue  $U_1 = 6 V$ , l'intensité du courant est  $I_1 = 0, 2 A$ .
  - Déterminer la résistance R et la puissance électrique consommée.
- 2 Le circuit est ensuite alimenté sous une tension alternative de valeur efficace  $U_2 = 6$  V et de fréquence N = 50 Hz. L'intensité efficace du courant est  $I_2 = 0, 1$  A. Calculer:
  - a. La puissance électrique du circuit
  - b. Le facteur de puissance du circuit.
  - $\mathbf{c}$ . L'inductance L de la bobine.
- 3 Un condensateur associé en série ramène le facteur de puissance du circuit à 0,8. En admettant que le circuit est capacitif, calculer :
  - a. L'impédance du circuit.
  - **b.** Sa réactance X.
  - $\mathbf{c}$ . La valeur de la capacité C du condensateur.

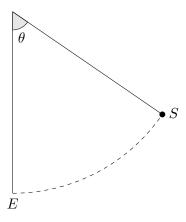


ALIA TIQUES

## Sujet bac 2013 - Série C

► Voir le corrigé.

▶ Retour au sommaire. ✓ Allie Vi


PHYSIQUE 12 points.

#### Exercice 1 (Oscillateurs mécaniques)

Un solide S supposé ponctuel, de masse m est attaché à l'extrémité d'un fil fin, inextensible de masse négligeable, de longueur l. L'autre extrémité du fil est fixé au point O. On écarte S d'un angle  $\theta_m$  à partir de la verticale OE et on l'abandonne sans vitesse initiale à l'instant t=0.

À une date t, l'abscisse et la vitesse angulaire du solide S sont respectivement  $\theta$  et  $\dot{\theta}$ .

On considère nulle l'énergie potentielle de pesanteur du système « Solide + Terre » au plan horizontal passant par E.



- **1** a. Établir l'expression de l'énergie mécanique  $E_m$  du système « Solide-Terre » en fonction de m, l, g,  $\theta$  et  $\dot{\theta}$  (g étant l'intensité de la pesanteur).
  - b. Montrer que cette énergie est constante.
- 2 Les oscillations sont de faibles amplitudes.
  - **a.** En utilisant les résultats de la question 1., montrer que l'équation différentielle du mouvement a pour expression  $\ddot{\theta} + \frac{g}{l}\theta = 0$ .
  - **b.** Calculer la période propre  $T_0$ .
  - c. Établir l'expression  $\theta = f(t)$  de l'abscisse angulaire en fonction du temps sachant que  $\theta_m = 6^{\circ}$ .

On donne: l = 60 cm;  $g = 9.8 \text{ m/s}^2$ ;  $1 = 1.744.10^{-2} \text{ rad.}$ 

Exercice 2 (Ondes progressives

L'extrémité S d'une corde élastique vibrante tendue horizontalement est animée d'un mouvement transversal sinusoïdal de fréquence N=50 Hz et d'amplitude a=5 mm. Des ondes se propagent le long de cette corde à la célérité v=10 m/s.

À l'instant t = 0, S commence à vibrer à partir de sa position d'équilibre en allant dans le sens des élongations positives.

- 1 Écrire l'équation horaire  $y_S(t)$  du mouvement du point S.
- 2 On considère le point M de la corde situé à 0, 25 m de S.
  - a. À quel instant M commence t-il à vibrer?
  - **b.** Écrire l'équation horaire  $y_M(t)$  du mouvement de M.
  - c. Quelles sont les vitesses de M aux instants  $t_1 = 1,25.10^{-2} \text{ s}$ ;  $t_2 = 4,5.10^{-2} \text{ s}$ .
- Représenter sur un même système d'axes, les graphes des fonctions  $y_S(t)$  et  $y_M(t)$  des mouvements de S et M.

#### Exercice 3 (Courant alternatif)

Un circuit électrique comprend en série :

- Un résistor de résistance  $R=20\,\Omega$
- Une bobine d'inductance L et de résistance négligeable
- Un condensateur de capacité C
- 1 On applique aux bornes de ce circuit une tension sinusoïdale de valeur efficace U et de fréquence  $N_1 = 50$  Hz, les résultats donnent alors les résultats suivants :
  - Intensité efficace du courant dans le circuit  $I_1 = 1, 5$  A
  - Impédance de la bobine  $Z_L = 30 \,\Omega$
  - Impédance du condensateur  $Z_C = 40 \,\Omega$
  - a. Déterminer :
    - **a.1.** la valeur efficace U de la tension aux bornes du circuit
    - **a.2.** l'inductance L de la bobine
    - $\mathbf{a.3.}$  la capacité C du condensateur
  - **b.** Montrer que le circuit est capacitif.
- On applique maintenant aux bornes du circuit une nouvelle tension sinusoïdale de fréquence  $N_2 = 100$  Hz et de même valeur efficace U que la tension précédente.
  - a. Calculer l'intensité efficace  $I_2$  du courant dans le circuit.
  - **b.** Le circuit reste-t-il capacitif? Justifier.

CHIMIE 8 points \_\_\_\_\_

#### Exercice 1 (Spectre de l'atome d'hydrogène)

Les niveaux d'énergie de l'atome d'hydrogène sont donnés par l'expression :

$$E_n = -\frac{13,6}{n^2} \, (\text{eV})$$
 où  $n$  est un entier supérieur ou égal à  $1$ 

- 1 Calculer les énergies correspondant à n=1; n=2; n=3.
- 2 Comment nomme-t-on le premier niveau?
- a. Dans quel état l'atome d'hydrogène se trouve lorsque n tend vers l'infini?
  - b. Quel est alors son énergie?
- 4 a. Calculer la fréquence de radiations lorsque :
  - **a.1.** l'atome passe du niveau  $E_2$  au niveau  $E_1$ .
  - **a.2.** l'atome passe du niveau  $E_3$  au niveau  $E_1$ .
  - b. Calculer les longueurs d'onde correspondant à ces fréquences.
  - c. À quel domaine spectral appartiennent ces radiations?
- 5 Calculer la longueur d'onde la plus courte que l'on peut trouver dans le spectre de l'atome d'hydrogène.

$$h = 6,62.10^{-34} \,\mathrm{J \cdot s}$$
;  $c = 3.10^8 \,\mathrm{m/s}$ ;  $1 \,\mathrm{eV} = 1,6.10^{-19} \,\mathrm{J}$ .

#### Exercice 2 (Solution aqueuse ionique)

Une solution d'acide éthanoïque (CH<sub>3</sub>COOH) de concentration molaire  $C_A=10^{-2}$  mol/L a un pH égal à 3,4.

- a. Écrire l'équation de dissociation ionique de l'acide éthanoïque dans l'eau.
  - b. Recenser les différentes espèces chimiques présentes dans la solution.
  - c. Déterminer leurs concentrations concentrations molaires.
- **2** Déterminer :
  - a. le coefficient de dissociation ionique de l'acide.
  - **b.** le pKa du couple acide-base  $\mathrm{CH_3COOH}\,/\,\mathrm{CH_3COO^-}.$
- 3 Le pKa du couple acide-base HCOOH/HCOO est égal à 3,8.
  - a. Comparer les forces acides HCOOH et CH<sub>3</sub>COOH.
  - **b.** Justifier.



## Sujet bac 2014

➤ Voir le corrigé.

▶ Retour au sommaire

CHIME 8 points.

#### Partie A : vérification des connaissances

#### Questions à choix multiples I.

Choisis la bonne réponse.

- 1 Le pH d'une solution de dibase forte, de concentration  $C_b$  est :
  - a)  $-\log C_b$ ;
  - **b)**  $-\log 2C_b$ ;
  - c)  $14 + \log 2C_b$ ;
  - **d**)  $14 + \log C_b$ .
- 2 La réaction d'estérification est une réaction :
  - a) exothermique;
  - **b)** athermique;
  - c) thermique;
  - d) endothermique.
- 3 L'oxydation est une réaction chimique qui correspond à :
  - a) la diminution du nombre d'oxydation;
  - b) l'augmentation du nombre d'oxydation.
- 4 Lors d'une réaction d'hydrolyse, on utilise un catalyseur pour :
  - a) ralentir la réaction;
  - b) arrêter la réaction;

## d) modifier la composition de la réaction. Réponds par vrai ou faux II.

- 1 La désintégration  $\alpha$  se produit avec des noyaux lourds.
- 2 Lors de l'absorption, l'atome d'hydrogène passe d'un niveau supérieur vers un niveau inférieur.
- 3 L'abaissement cryométrique est proportionnel à la concentration C de la solution.
- 4 L'énergie d'un atome dans son état fondamental est maximale.

#### III. Texte à trous

Complète la phrase suivante en remplaçant les quatre mots manquants par les mots suivants : réaction; équilibrée; réactionnel; coexistent.

Une réaction · · · · · · est une · · · · · · au cours de laquelle les réactifs et les produits · · · · · · · dans le milieu · · · · · · ·

#### Partie B: application des connaissances

La radon  $^{222}_{86}$ R<sub>n</sub> a une période ou demi-vie de 3,8 jours. Il est radioactif  $\alpha$ .

- 1 Écris l'équation bilan de sa désintégration.
- 2 Calculer sa constante radioactive.
- 3 On dispose d'un échantillon de 0,20 mg de radon 222. Combien y a t-il de noyaux radioactifs dans l'échantillon?
- 4 Quelle est l'activité de l'échantillon?
- 5 Quelle sera l'activité de l'échantillon au bout de 20 jours?

On donne  $\aleph = 6,02.10^{23} \, \text{mol}^{-1}$ ;  $M(Rn) = 222 \, g \cdot \text{mol}^{-1}$ .

Extrait du tableau périodique.

| Nom     | Bismuth          | Polonium         | Astate           | Radon            | Francium         | Radium             |
|---------|------------------|------------------|------------------|------------------|------------------|--------------------|
| Symbole | <sub>83</sub> Bi | <sub>84</sub> Po | <sub>85</sub> At | <sub>86</sub> Rn | <sub>87</sub> Fr | $_{88}\mathrm{Ra}$ |

PHYSIQUE 12 points

RILLANDIE

## Partie A : vérification des connaissances

1 Réponds par vrai ou faux

- a. L'accélération du mouvement d'un objet en chute libre dépend de sa masse.
- b. Dans un pendule conique l'angle d'écartement  $\theta$  du fil par rapport à l'axe vertical est lié à sa vitesse angulaire  $\omega$  par la relation :  $\frac{1}{\cos \theta} = \frac{\omega^2 L}{\sigma}$ .
- c. L'équation différentielle d'un pendule élastique est de la forme :

$$\mathbf{c1)} \ \frac{d^2x}{dt^2} + \frac{m}{k}x = 0.$$

$$\mathbf{c2)} \ \frac{d^2x}{dt^2} + kmx = 0.$$

$$\mathbf{c1)} \ \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

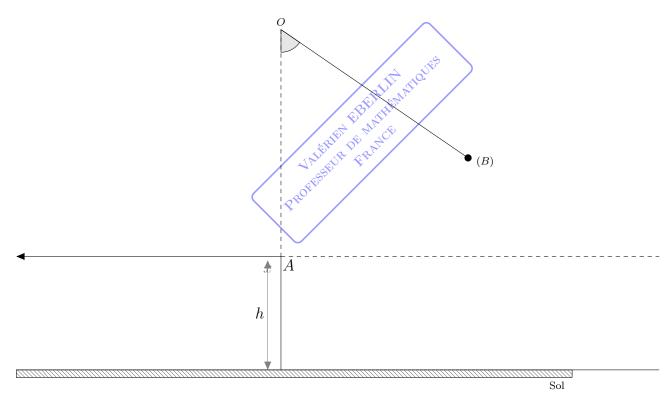
#### 2 Réarrangement (Texte en désordre)

La phrase suivante concernant la définition de l'interfrange a été écrite en désordre. Ordonne-la.

est / de même / la distance / qui sépare / nature / l'interfrange / de deux / franges consécutives / les milieux.

#### Partie B: application des connaissances

#### Exercice (Effet photo électrique)


Un cellule photo électrique à cathode métallique (strondium) est éclairée simultanément par deux radiations monochromatiques de fréquences respectives  $\nu_1 = 6,66.10^{14}\,\mathrm{Hz}$  et  $\nu_2 = 4,84.10^{14}\,\mathrm{Hz}$ . Le seuil photoélectrique de la cathode est :  $\lambda_0 = 0,6\,\mu m$ .

- 1 Quelle est de ces deux radiations, celle qui provoque l'effet photoélectrique?
- 2 Calcule la vitesse maximale avec laquelle un électron sort de la cathode.
- Le rendement quantique de la cellule étant r = 0,02 et l'intensité du courant de saturation  $I_S = 10^{-6}$  A, déterminer la puissance lumineuse reçue par la cathode.

On donne : h = 6,62.10  $^{-34}$  J · s ;  $C = 3.10^8$  m .s  $^{-1}$  ;  $m = 9, 1.10^{-31}$  kg (masse de l'électron) ; e = 1,6.10  $^{-19}$  C.

# Partie C: résolution d'un problème

Un élève de terminale veut déterminer les coordonnées d'une bille (B) au point de chute après rupture du fil de suspension. Pour cela, il dispose d'un pendule simple constitué d'un fil inextensible et sans masse de longueur l=2,0 m, portant à son extrémité inférieure une petite bille (B) de masse  $m=100\,\mathrm{g}$ . La bille (B) est considérée comme ponctuelle. L'autre extrémité du fil est fixée à un support en un point O. À l'équilibre, le pendule est vertical et la bille se trouve alors à une hauteur h=2,5 m du sol. On prendra  $g=9,8\,\mathrm{m}/\mathrm{s}^2$ .



On écarte le pendule d'un angle  $\alpha_0=60^\circ$  de sa position d'équilibre et on le lâche sans vitesse initiale.

- **a.** Exprimer en fonction de g, l et  $\alpha_0$ , la vitesse v de la bille (B) au passage par la position d'équilibre.
  - En déduire sa valeur numérique.
  - **b.** Déterminer l'intensité T de la tension du fil lorsque le pendule passe par la verticale.
- 2 Lorsque la bille passe par la verticale, le fil de suspension se coupe. La bille effectue un mouvement de chute et arrive au sol en un point C.
  - a. Établis l'équation cartésienne de la trajectoire dans le repère  $(A, \vec{i}, \vec{j})$ .
  - **b.** Détermine les coordonnées  $x_C$  et  $y_C$  du point C, lieu de chute de la bille sur le sol.



## Sujet bac 2015 - Série C

- ► Voir le corrigé.
- ► Retour au sommaire.

| CHIME 8         | points |
|-----------------|--------|
| O I I I I I I I |        |

#### Partie A : vérification des connaissances

#### 1 Texte à trous

Complète la phrase ci-après par les mots : inférieur, atome, énergie, niveau.

Lorsque l'électron de l' $\cdots$  d'hydrogène passe d'un $\cdots$  supérieur à un niveau  $\cdots$ , l'atome émet de l' $\cdots$ 

#### 2 Appariement

Relie chaque élément-question de la colonne A à un élément-réponse de la colonne B. Exemple :  $A_3=B_3$ 

.

| Colonne A                                                             | Colonne B                                                                                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| A1) $^{201}_{84}$ Po $\longrightarrow ^{206}_{82}$ Pb $+ ^{4}_{2}$ He | B1) $2 \text{ Al} + 6 \text{ H}_3 \text{O}^+ \longrightarrow 2 \text{ Al}^{3+} + \text{H}_2^+$ |
| A2) Réaction acido-basique                                            | B1) $NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$                                              |
| A3) Oxydation du métal zinc                                           | $B3)  Zn \longrightarrow Zn^{2+} + 2e^{-}$                                                     |
| ,                                                                     | B4) Réaction nucléaire spontanée                                                               |
| A4) Réaction d'oxydo-réduction                                        | - Children                                                                                     |
| A5) $^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He$         | B5) Pb est le noyau fils                                                                       |

#### 3 Questions à choix multiples

Choisis la bonne réponse. Exemple :  $E = e_5$ 

.

- a. Une solution aqueuse dont le pH est voisin du pK<sub>A</sub> est une :
  - a1. solution réductrice;
  - **a2.** solution tampon;
  - **a3.** solution neutre.
- b. Lorsque l'atome d'hydrogène est à son niveau d'énergie le plus bas, l'atome est :
  - **b1.** à l'état fondamental;
  - **b2.** à l'état excité;
  - **b3.** à l'état ionisé.
- c. La radio activité  $\beta^-$  correspond à l'émission :
  - **c1.** de protons;
  - c2. de noyaux d'hélium;
  - c3. d'électrons.
- **d.** Une solution aqueuse d'acide chlorhydrique est obtenue par dissolution dans l'eau pure :
  - **d1.** du dichlore gazeux;
  - d2. de gaz chlorure d'hydrogène;
  - **d3.** du chlorure d'aluminium solide.

#### Partie B: application des connaissances (solutions aqueuse)

Une solution d'éthanamine  $(C_2H_5NH_2)$  de concentration molaire volumique  $C_0=0,1 \text{ mol/L}$  a un pH = 11,8.

- 1 Vérifie si l'éthanamine est une base forte ou une base faible.
- 2 Écris l'équation de la réaction de l'éthanamine avec de l'eau.
- 3 a. Recense les espèces chimiques présentes dans la solution.
  - **b.** Détermine leurs concentrations molaires volumiques.
- 4 Sachant que le couple ion éthanamonium/éthanamine est  $C_2H_5NH_3^+/C_2H_5NH_2$ , calcule le pKa de ce couple acide/base.

PHYSIQUE 12 points

#### Partie A : vérification des connaissances

1 Réarrangement

La phrase suivante est écrite en désordre. Ordonne-là.

la trajectoire / géostationnaire / d'un satellite / dans le plan équatorial / est toujours / de la terre.

### 2 Questions à alternative vrai ou faux

- a. Les ondes mécaniques se propagent dans le vide.
- **b.** La loi d'ohm en courant alternatif s'écrit V = RI.
- c. Pour une corde qui est le siège d'ondes stationnaires, l'élongation à l'instant t d'un point vibrant est :  $y = 2a \sin\left(\frac{2\pi x}{\lambda}\right) \cos\left(\frac{2\pi t}{T}\right)$ .
- d. L'équation différentielle du mouvement d'un pendule de torsion est  $\ddot{\theta} + \frac{C}{I}\theta = 0$ .

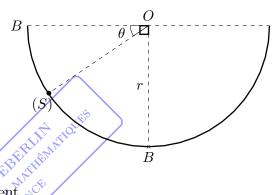
#### Partie B: application des connaissances

On dispose d'une fourche munie de deux pointes  $S_1$  et  $S_2$  qui frappent la surface libre d'un liquide au repos. La fourche est liée à un vibreur qui impose deux vibrations sinusoïdales à  $S_1$  et  $S_2$  en phase, de même amplitude  $a=2.10^{-3}\mathrm{m}$  et de même fréquence  $N=100~\mathrm{Hz}$ .

Soit  $y_{S_1}(t) = y_{S_2}(t) = a \sin \omega t$ , les équations du mouvement des deux sources.

- Établis l'équation du mouvement résultant d'un point M situé à une distance  $d_1$  de  $S_1$  et  $d_2$  de  $S_2$ .
- 2 Calcule le nombre de points d'amplitude maximale qui se forment sur le segment  $S_1S_2$ .
- Détermine l'état vibratoire d'un point P situé à  $d_1 = 3, 15$  cm de  $S_1$  et  $d_2 = 4, 35$  cm de  $S_2$ .

On donne:


- célérité des ondes à la surface du liquide v = 0,6 m/s;
- $S_1S_2 = 3$  cm.

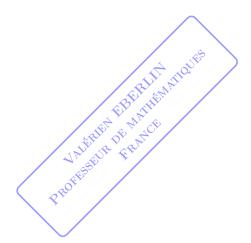
#### Partie C: résolution d'un problème

Afin d'évaluer l'impact de la force de frottement sur la vitesse d'un solide, on réalise deux études comparatives en utilisant le dispositif ci-après.

Le solide (S), assimilable à un point matériel de masse  $m=10\,\mathrm{g}$ , glisse à l'intérieur de la demisphère de centre O et de rayon  $r=1,25\,\mathrm{m}$ .

On le lâche du point A sans vitesse initiale. Sa position à l'intérieur de la demi-sphère est repérée par  $\theta$  (figure ci-contre).




- 1 On admet que le solide (S) glisse sans frottement.
  - a. Exprime sa vitesse au point M en fonction de g, r et de  $\theta$ . Calcule sa valeur numérique  $v_B$  au point B ( $g = 10 \,\mathrm{m \cdot s^{-2}}$ ).
  - b. Exprime l'intensité de la réaction R exercée par la demi-sphère sur le solide en fonction de g, r et de  $\theta$ .

- c. Calcul R en B.
- En réalité, le solide est soumis à une force de frottement  $\overrightarrow{f}$  de même direction et de sens opposé au vecteur vitesse  $\overrightarrow{v}$  du solide. L'intensité de  $\overrightarrow{f}$  est égale à 1,21.10<sup>-2</sup> N.
  - **a.** Calcule la vitesse  $v'_B$  au point B.
  - **b.** Compare  $v_B$  et  $v'_B$  puis conclus.

us.

PROFESSITA TERANCE

PROFESSITA TERANCE



## Sujet bac 2016 - Série C

► Voir le corrigé.

▶Retour au sommaire

CHIMIE 8 points

#### Partie A : vérification des connaissances

4

#### 1 Question à alternative vrai ou faux

- 1 Réponds par vrai ou faux aux affirmations suivantes. Exemple : 1. c = vrai.
- 1. a. La réaction de saponification d'un ester est totale.
- 1. b. La dilution d'une solution d'acide faible augmente sa force.

#### 2 Texte à trous

1 Complète la phrase suivante par quatre des cinq mots suivants :  $r\'{e}duction$ ; oxydation;  $r\'{e}action$ ; transfert;  $lib\'{e}ration$ .

Une ······ d'oxydoréduction est une réaction de ····· d'électrons au cours de laquelle il y a simultanément ····· du réducteur et ····· de l'oxydant.

#### 3 Appariement

2 Associe un élément-question de la colonne A à un élément-réponse de la colonne B. Exemple :  $a_5 = b_6$ 

| Colonne A                                            | Colonne B                                    |
|------------------------------------------------------|----------------------------------------------|
|                                                      | A taliffer                                   |
| $a_1$ : énergie de ionisation de l'atome d'hydrogène | $b_1 : E^0 = 0,17 V$                         |
| LEST SE                                              |                                              |
| a <sub>2</sub> : énergie au repos d'un noyau         | $b_2 : E_0 = mc^2$                           |
| Milita Pran                                          |                                              |
| a <sub>3</sub> : force électromotrice d'une pile     | $b_3 : E = 13.6 \text{eV}$                   |
| agity /                                              |                                              |
| a <sub>4</sub> : potentiel redox d'un couple         | $b_4 : E^0 (Cu^{2+}/Cu) - E^0(Z_n^{2+}/Z_n)$ |
|                                                      |                                              |

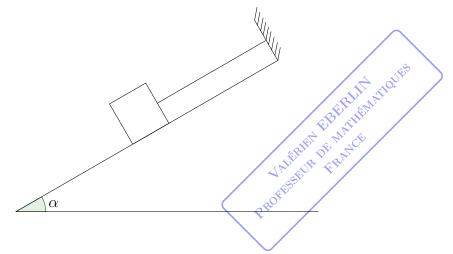
#### Partie B: application des connaissances

4 On prépare une solution  $S_1$  en dissolvant du gaz ammoniac (NH<sub>3</sub>) de volume  $V_1$  dans 2 ???? d'eau. La concentration de cette solution est de  $2.08 \cdot 10^{-4}$  mol/L et son pH = 9,7.

- **a.** Calcule la valeur de  $V_1$  dans les C.N.T.P. $V_1$  (0,75 pt)
  - b. Écris l'équation de dissociation de l'ammoniac dans l'eau. (0,5 pt)
  - c. Calcule les concentrations de toutes les espèces chimiques présentes dans la solution  $S_1$ . (1,25 pt)
  - d. Déduis-en le pKa du couple acide-base correspondant. (0,5 pt)
- 2 On prélève 20 mL de la solution  $S_1$ , on y verse une solution d'acide chlorhydrique de concentration  $4{,}16.10^{-4}\,\mathrm{mol/L}$  et de volume V.

On obtient une solution  $S_2$  dont le pH est égal au pKa.

- **a.** Nomme la solution  $S_2$ . (0.5 pt)
- **b.** Calcule la valeur de V. (0,5 pt)


Donnée :  $V_m = 22.4 \,\mathrm{L} \cdot \mathrm{mol}^{-1}$ .



#### Partie A : vérification des connaissances

3

- 1 Questions à réponse courte
  - 1 Donne la définition de l'interfrange.
- 2 Schéma à compléter
  - 1 Reproduis et complète le schéma suivant par les forces appliquées au solide (on néglige les frottements).



#### 3 Réarrangement

1 Recopie et ordonne la phrase suivante :

Dans un circuit capacitif

est

l'impédance de la bobine

supérieure à

l'impédance du condensateur

#### Partie B: application des connaissances

4 Un dipôle MN contient en série un condensateur ohmique de résistance  $R=50~\Omega$ et une bobine d'induction L=0.25~H et de résistance r. Ce dipôle est alimenté par une tension sinusoïdale  $\mu(t)=220~\sqrt{2}\cos 100~\pi t~(V)$ .



1 Sachant que l'intensité efficace du courant est égale à 2A;

Détermine :

**a.** l'impédance du dipôle MN.

(0.5 pt)

**b.** la valeur de r.

(1 pt)

c. la puissance moyenne consommée par ce dipôle.

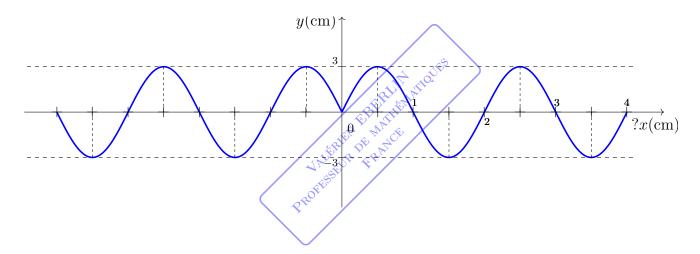
(0.5 pt)

On ajoute aux éléments du dipôle précédent entre M et N, un condensateur de capacité C.

Ce dipôle est alimenté par la tension sinusoïdale précédente. On constate que l'intensité efficace du courant devient maximale.

Détermine :

**a.** la valeur de C. (0.5 pt)


**b.** l'impédance du dipôle MN. (0.5 pt)

c. l'intensité instantanée i(t) du courant qui traverse ce dipôle. (1 pt)

#### Partie C: Résolution d'un problème

5

On veut comparer le mouvement d'un point de la surface de l'eau et celui de la source où débute le mouvement. Pour cela, on considère une lame vibrante animée d'un mouvement sinusoïdal de fréquence  $N=50\,\mathrm{Hz}$ , qui est reliée à une pointe qui frappe verticalement la surface d'une nappe d'eau en un point S. La figure suivante représente la coupe transversale de la surface de l'eau à un instant  $t_1$ .



- 1a. l'amplitude du mouvement.(0,5 pt)b. la longueur d'onde.(0,5 pt)c. la célérité C des ondes.(0,5 pt)d. la date  $t_1$ .(0,5 pt)
- **2** Établis l'équation horaire du mouvement S, sachant qu'à l'instant t = 0, S passe par la position d'équilibre en allant dans le sens des élongations positives. (1 pt)
- 3 Soit un point p de la surface de l'eau situé à 4,5 cm de la source S.
  - a. Établis l'équation horaire du mouvement de p. (1 pt) b. Compare les mouvements de p et de S. (1 pt)





➤ Voir le corrigé.

▶ Retour au sommaire. ✓ Retour au sommaire.

\_\_\_ CHIMIE 8 points \_\_\_\_\_

#### Partie A : vérification des connaissances

# <sup>4</sup> Question à réponse courte

1 Donne les caractéristiques d'une réaction d'estérification.

#### Texte à trous

1 Recopie et complète la phrase suivante par quatre des cinq mots ci-après : niveau; absorption; ????; hydrogène; supérieure.

Lorsque l'électron de l'atome d' · · · · · · · passe d'un · · · · · · · d'énergie inférieure à un niveau d'énergie · · · · · · · , il y a · · · · · · · de photons.

#### Appariement

2 Associe un élément-question de la colonne A à un élément-réponse correspondant de la colonne B. Exemple :  $A_5=B_6$ .

| Colonne A                  | Colonne B                                                      |
|----------------------------|----------------------------------------------------------------|
|                            | B <sub>1</sub> : CH <sub>3</sub> COOCH <sub>3</sub> AN ANTOLUE |
| $A_1$ : acide carboxylique | $B_1: CH_3COOCH_3$                                             |
|                            | EBI HE                                                         |
| $A_2$ : base forte         | $B_2: NH_3$                                                    |
|                            | Stiff R TRAK                                                   |
| $A_3$ : esther             | $B_3: NaOH$                                                    |
|                            | a Office                                                       |
| $A_4$ : base faible        | $B_4: C_6H_5COOH$                                              |
|                            |                                                                |

#### Partie B: application des connaissances

La glande thyroïde produit des hormone essentielles à différentes fonctions de l'organisme à ???? de l'iode alimentaire. Pour vérifier la formule ou le fonctionnement de cette glande, on procède ???? scintigraphie thyroïdienne en utilisant les isotopes 131  $\binom{131}{53}$ I) ou 123  $\binom{123}{53}$ I) de l'iode.

Pour cette scintigraphie, un patient ingère une masse  $m_0 = 10^{-6}$  g de l'isotope  $^{131}_{53}$ I.

1 Calcule le nombre  $N_0$  de noyaux radioactifs initialement présents dans la dose ingérée.

(0.75 pt)

- 2 L'isotope  $^{131}_{53}$ I est radioactif  $\beta^-$ . Écris l'équation de la désintégration. (0.75 pt)
- 3 La demi-vie ou la période de l'isotope  $^{131}_{53}$ I vaut T=8,0 jours.
  - a. Établis l'activité A à la date t en fonction de T,  $A_0$  et de t. (1 pt)
  - **b.** Calcule l'activité  $A_0$  de l'échantillon  $^{131}_{53}$ I à l'instant initial. (0.75 pt)
  - c. Calcule l'activité A à l'instant où l'examen est pratiqué, c'est à dire 5 heures après l'ingestion de l'iode radioactif  $^{131}_{53}$ I. (0.75 pt).

On donne :  $N_A = 6,02 \cdot 10^{23} \,\text{mol}^{-1}$ ;  $M({}^{131}_{53}I) = 131 \,\text{g/mol}$ . Extrait du tableau périodique :  $_{51}\mathrm{S}_{\mathrm{b}}~;~_{52}\mathrm{T}_{\mathrm{e}}~;~_{53}\mathrm{I}~;~_{54}\mathrm{X}_{\mathrm{e}}~;~_{55}\mathrm{C}_{\mathrm{s}}.$ 

| P | H | Y | SI | $\bigcirc$ | U      | $\mathbf{E}$ | 12 | points    |  |
|---|---|---|----|------------|--------|--------------|----|-----------|--|
|   |   | _ | ,  | 4,         | $\sim$ |              |    | 0 0 11100 |  |

#### Partie A : vérification des connaissances

3

#### Questions à choix multiples

- 1 Choisis la bonne réponse parmi les propositions suivantes :
  - a. La période d'un pendule simple dépend :

**a**<sub>1</sub>: de la masse du pendule;

a<sub>2</sub>: de la longueur du pendule;

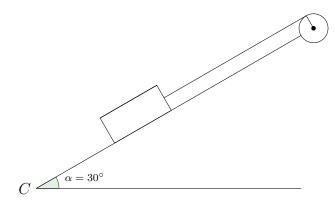
a<sub>3</sub>: de la tension du fil.

b. Dans un circuit électrique à la résonance, l'intensité efficace du courant est :

 $\mathbf{b_1}$ : minimale;

 $\mathbf{b_2}$ : nulle;

 $\mathbf{b_3}$ : maximale.


#### 2 Questions à alternative vrai ou faux

- 2 Réponds par Vrai ou Faix aux affirmations suivantes. Exemple : 2. e = vrai.
- 2. a. La cinétique étudie les mouvements des corps en tenant compte des forces qui les produisent.
- 2. b. Un ébranlement transversal se propage parallèlement à sa direction.
- 2. c. Un système en mouvement de chute libre n'est soumis qu'à son poids.
- 2. d. La dualité explique l'aspect corpusculaire et l'aspect ondulatoire de la lumière.

#### Partie B: application des connaissances

4

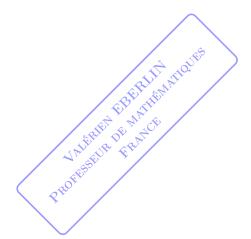
Un corps A de masse  $M=1\,\mathrm{Kg}$  peut glisser sur un plan incliné dont la ligne de plus grande pente fait un angle de  $\alpha=30^\circ$  avec le plan horizontal. Les forces de frottement qui agissent sur le corps A sont équivalentes à une force unique  $\overrightarrow{f}$  parallèle au déplacement et de sens contraire, d'intensité égale au dixième du poids  $(f=\frac{1}{10}P)$ . Le corps A est relié à un fil enroulé sur un cylindre et fixé à celui-ci. Ce cylindre de rayon r=6 cm est mobile sans frottement autour d'un axe horizontal O passant par son axe de symétrie et a un moment d'inertie  $J=9\cdot 10^{-4}\mathrm{Kg}\cdot\mathrm{m}^2$ .



- 1 On lâche le corps. (1,25 pt)
  - a. Donne l'expression de l'accélération du centre de gravité de A.
  - **b.** Déduis la nature du mouvement de A.
- 2 Calcule la tension T du fil. (0.75 pt)
- 3 Après un parcours de 2 m sur le plan incliné, le fil reliant A au cylindre est coupé.
  - **a.** Calcule la vitesse du corps A à l'issue du parcours de 2 m. (1 pt)
  - **b.** Calcule la nouvelle valeur a' de l'accélération du corps A. (1 pt)

On donne :  $g = 9,81 \,\text{m/s}^2$ .

#### Partie C: résolution d'un problème


5 On veut déterminer le rendement d'une cellule photoélectrique au césium. Pour cela, on dispose d'une cellule photoélectrique qui reçoit un rayonnement lumineux monochromatique de longueur d'onde  $\lambda=0,4\,\mu\mathrm{m}$ . La longueur d'onde seuil vaut  $\lambda_0=0,66\,\mu\mathrm{m}$ .

- 1 Calcul, en joules, le travail d'extraction  $W_0$  d'un électron de la cathode. (1 pt)
- 2 Calcule, en joules, l'énergie d'un photon lumineux W, qui arrive sur la cathode. (1 pt)
- Calcule l'énergie cinétique maximale d'un électron émis par la cathode.

  Déduis sa vitesse. (1 pt)
- 4 Le courant photoélectrique a une intensité de saturation égale à  $2,4 \times 10^{-9}$  A.
  - 4. 1. Combien faut-il de photons par seconde pour engendrer ce courant? La puissance de rayonnement qui tombe sur la cathode est égale à  $7,4 \times 10^{-7}$ W. (1pt)
  - 4. 2. Quel est le rendement quantique de la cellule, c'est à dire le rapport entre le nombre de photons qui provoquent l'émission d'électrons et le nombre de photons incidents?

    (1 pt)

 $\mbox{On donne}: c = 3 \times 10^8 \, \mbox{ms}^{-1} \; \; ; \; \; h = 6,62 \times 10^{-34} \, \mbox{J} \cdot \mbox{S} \; \; ; \; \; e = 1,6 \times 10^{-19} \, \mbox{C} \; \; ; \; \; \mbox{m}_e = 9 \times 10^{-31} \, \mbox{Kg}.$ 



## Sujet bac 2018 - Série C

► Voir le corrigé.

▶Retour au sommaire

CHMIE 8 points \_\_\_\_\_

#### Partie A : vérification des connaissances

4

#### 1 Questions à alternative Vrai ou Faux

2

Réponds par Vrai ou Faux aux affirmations suivantes. Exemple : 1.f = Vrai.

- 1. a) Une réduction est une réaction au cours de la quelle il y a un gain d'électrons.
- 1. b) Les lois de Raoult ne s'appliquent qu'aux solutions diluées non électrolysables.
- 1. c) Pour un mélange équimolaire, le rendement d'une réaction d'hydrolyse vaut  $33\,\%$  lorsqu'il s'agit d'un alcool secondaire.
- 1. d) Pour une réaction d'ordre un, le temps de demi-réaction est  $\frac{1}{kC_0}$ .

#### 2 Texte à trous

1 Recopie puis complète le texte ci-après par quatre mots manquant suivants : *ionisation* ; *énergie* ; *transition* ; *raies* ; *excité* ; *radiations*.

L'ensemble des · · · · · · · émises lors des · · · · · · · aboutissant au même niveau d' · · · · · · · constitue une série de · · · · · · · .

#### 3 Question à réponse courte

1 Donne la relation qui lie le pH au pKa d'un couple acide/base.

## Partie B: application des connaissances

4

Données : masses molaires atomiques (en g.mol $^{-1}$ ), Mn : 55 ; K : 39 ; O : 16. On prépare une solution de permanganate de potassium (K $^{+}$  + MnO $_{4}$  $^{-}$ ) en dissolvant une masse  $m=19,75\,\mathrm{g}$  de cristaux anhydres de permanganate de potassium (KMnO $_{4}$ ) dans 250 ml d'eau distillée.

- 1 Calcule la concentration  $C_1$  de la solution ainsi obtenue. (1pt)
- 2 On veut déterminer la concentration d'une solution d'eau oxygénée (H<sub>2</sub>O<sub>2</sub>). Pour ce faire, on prélève un volume  $V_2 = 10,0$  mL de cette solution que l'on a fait réagir avec la solution de permanganate de potassium. Le volume total de solution de permanganate de potassium versé à l'équivalence est  $V_1 = 8,0$  mb

Les couples redox mis en jeu sont :  $MnO_4$   $/Mn_2$  et  $O_2$   $/H_2O_2$ .

- a. Écris les demi-équations électroniques intervenant. (1 pt)
- **b.** Déduis l'équation-bilan de la réaction d'oxydoréduction qui a lieu. (1 pt)
- c. Détermine la concentration  $C_2$  de la solution d'eau oxygénée. (1 pt)

| PHYSIQUE 12 points |
|--------------------|
|                    |

#### Partie A : vérification des connaissances

3

#### Questions à choix multiples 1

2 Choisis la bonne réponse parmi les propositions suivantes. Exemple : 1. 5 = a.

- 1. 1) La pulsation propre d'un pendule de torsion est :
  - a)  $\omega_0 = \sqrt{\frac{g}{l}}$ ;
  - b)  $\omega_0 = \sqrt{\frac{k}{m}}$ ;
  - c)  $\omega_0 = \sqrt{\frac{c}{J_{\Lambda}}}$ .
- 1. 2) Un circuit RLC est dit résonnant si :
  - a)  $L\omega \frac{1}{c\omega} > 0$ ;
  - $\mathbf{b)} \ L\omega \frac{1}{c\omega} < 0;$
  - c)  $L\omega = \frac{1}{c\omega}$ .
- 1. 3) Dans une région où règne un champ électrique uniforme  $\overrightarrow{E}$ , à l'extérieur des plaques, PROTESSEIL PENA le vecteur champ électrique  $\overrightarrow{E}$  est :
  - a) inférieure à zéro;
  - b) supérieure à zéro;
  - c) nul.
- 1. 4) Dans un mouvement rectiligne uniformément accéléré, le produit scalaire  $\overrightarrow{v}$ .  $\overrightarrow{a}$  est :

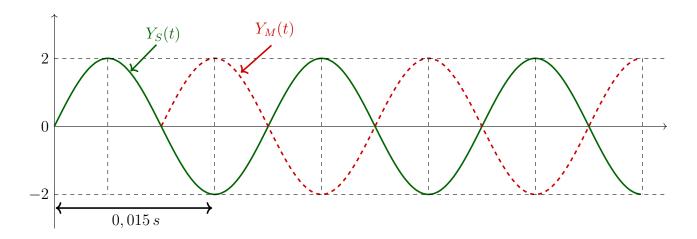
- a) nul;
- b) inférieur à zéro;
- c) supérieur à zéro.

#### Texte à trous

J. F. F. L. L. A. T. Q. L. E. S. A. A. T. Q. L. E. S. A. A. T. Q. L. E. S. A. T. A. T. Q. L. E. S. A. T. L. E. T. L. E. T. E. T. L. E. 1 Complète la phrase suivante par quatre des cinq mots suivants : mécanique ; cinétique ; conservation; constante; temps.

EBERLIN

Un système est dit · · · · · lorsque son énergie · · · · · reste · · · · · au cours du · · · · · · ·


#### Partie B: application des connaissances

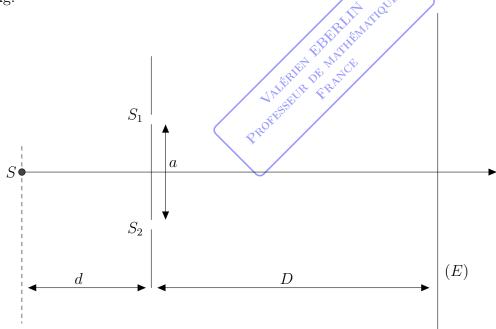
4

Une lame vibrante est animée d'un mouvement sinusoïdal de fréquence f, de période T et d'amplitude a. Elle est munie d'une pointe qui frappe verticalement la surface d'une nappe d'eau à un point S. On suppose qu'il n'y a ni amortissement, ni réflexion des ondes. À la date t=0, le point S commence à vibrer.

Ces oscillations se propagent à la surface de l'eau avec la célérité C = 20 m/s.

Les graphes ci-dessous représentent l'état vibratoire des points S et M. Le point M est situé à distance  $\overline{SM} = X$  de la source S.




#### 1 À partir de la courbe $Y_S(t)$ :

- a. Détermine les valeurs de la période T et de l'amplitude a. (1 pt)
- **b.** Avec quel retard  $\theta$  par rapport à S le point M commence-t-il à vibrer? (0.5 pt)D'après les courbes  $Y_S(t)$  et  $Y_M(t)$ , quel déphasage existe-t-il entre les mouvements de S et de M?(0.5 pt)
- c. Établis les équations horaires  $Y_S(t)$  et  $Y_M(t)$ .

## Partie C: résolution du problème

5

On se propose de déterminer la longueur d'onde  $\lambda_2$  inconnue d'une radiation monochromatique. Pour cela, on réalise l'expérience d'interférences lumineuses au moyen du dispositif de fentes d'Young.



La distance séparant les fentes  $S_1$  et  $S_2$  est a=1 mm. L'écran (E) d'observation est placé à la distance D=2 m du plan des fentes.

- 1 La source S émet d'abord une radiation lumineuse monochromatique de longueur d'onde  $\lambda_1$ . On mesure la distance séparant 11 franges brillantes consécutives, on trouve  $l = 9, 6.10^{-3}$  m.
  - 1. 1. a. Écris la formule donnant la position des franges brillantes sur l'écran en fonction de  $\lambda_1$ , D et a.
    - **b.** Établis l'expression de l'interfrange l en fonction de  $\lambda_1$ , D et a.
  - 1. 2. a. Calcule la valeur de l'interfrange.
    - **b.** Déduis la valeur de la longueur d'onde  $\lambda_1$  de la radiation émise.
- La source S émet simultanément les deux radiations lumineuses de longueurs d'onde  $\lambda_1$  et  $\lambda_2$ . Les deux systèmes de franges se superposent sur l'écran et l'on constate que la cinquième (5<sup>e</sup>) frange brillante de la radiation de longueur d'onde  $\lambda_1$  et la quatrième (4<sup>e</sup>) frange brillante de la radiation de longueur d'onde  $\lambda_2$  coïncident.

Détermine la longueur d'onde  $\lambda_2$ .

Donnée : 1 mm =  $10^{-3}$  m.



VII TIQUE

## Sujet bac 2019 - Série C

CHIME 8 points \_\_\_\_\_

#### Partie A: Vérification des connaissances

4

### 1 Appariement

2

Relie un élément question de la colonne A à un élément réponse de la colonne B. Exemple : 7 = e.

| Co | olonne A              | Colonne B |                                                                                                  |  |  |
|----|-----------------------|-----------|--------------------------------------------------------------------------------------------------|--|--|
| 1. | Constante d'acidité   | a)        | $R_H = \frac{E_0}{h_C}$                                                                          |  |  |
| 2. | Constante radioactive | b)        | $\frac{[\mathrm{D}]^{\delta}.[\mathrm{C}]^{\gamma}}{[\mathrm{A}]^{\alpha}.[\mathrm{B}]^{\beta}}$ |  |  |
| 3. | Constante d'équilibre | c)        | $\frac{[\mathrm{H_3O}^+].[\mathrm{Base}]}{[\mathrm{Acide}]}$                                     |  |  |
| 4. | Constante de Rydberg  | d)        | $\frac{\ln 2}{T}$                                                                                |  |  |

#### 2 Schéma à compléter

1 Complète le schéma de l'équation suivante :  $(C_2H_5)_2NH + H_2O \Longrightarrow \cdots + \cdots$ 

#### 3 Questions à choix multiples

1 Choisis la bonne réponse parmi les propositions suivantes. Exemple : 3.3 = a.3

3. 1) Le rendement d'estérification d'un alcool secondaire, pour un mélange équimolaire est :

- a. 1) 5%;
- a. 2) 67%;
- a. 3) 60%.
- 3. 2) La plus grande longueur d'onde émise par l'atome d'hydrogène appartient à la série de :
  - b. 1) Paschen;
  - b. 2) Balmer;
  - b. 3) Lyman.

VALERIER DE REALES

# Partie B: Application des connaissances

4

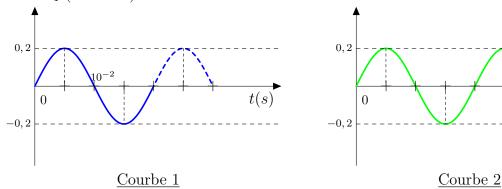
On considère une solution aqueuse d'acide monochloroéthanoïque (CH<sub>2</sub>ClCOOH) de concentration molaire  $C_0 = 5.10^{-2}$  mol.L<sup>-2</sup> et de pH=2,1.

- 1 Montre que l'acide monochloroéthanoïque est un acide faible. (0,5 pt)
- 2 Écris l'équation de la dissociation de cet acide dans l'eau. (0,5 pt)
- **a.** Calcule les concentrations de toutes les espèces chimiques présentes dans la solution. (1,25 pt)
  - b. Calcule le pKa du couple CH<sub>2</sub>ClCOOH/CH<sub>2</sub>ClCOO<sup>-</sup>. (0,75 pt)
- Quel volume  $V_B$  d'une solution d'hydroxyde de sodium (NaOH) de concentration  $C_B = 0, 1 \text{ mol.L}^{-1}$  doit-on ajouter à un volume  $V_A = 20 \text{ mL}$  de la solution d'acide monochloroéthanoïque pour obtenir une solution dont le pH est égal au pKa. (1 pt)

\_\_\_\_\_\_PHYSIQUE 12 points \_\_\_\_\_\_

# Partie A: Vérification des connaissances

3


- 1 Questions à alternative vrai ou faux limité
  - 2Réponds par vrai ou faux aux affirmations suivantes. Exemple  $\mathbf{e}=\mathbf{vrai}.$ 
    - a. Dans un pendule conique, l'angle d'écartement  $\theta$  du fil par rapport à l'axe vertical est lié à sa vitesse angulaire  $\omega$  par la relation  $\frac{1}{\cos \theta} = \frac{l \omega^2}{q}$ .
    - **b.** L'effet photo électrique se produit lorsque la longueur d'onde seuil  $\lambda_0$  du métal est supérieure à la longueur d'onde  $\lambda$  de la lumière incidente.

- c. L'accélération d'un point matériel animé d'un mouvement circulaire uniforme n'est pas nulle.
- d. À la résonance, l'impédance Z du circuit atteint sa valeur maximale.
- 2 Question à réponse construite

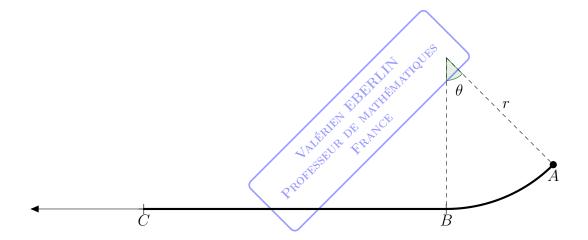
1

Partie B : Application de connaissances

4 Un milieu élastique est parcouru par des ondes progressives transversales sinusoïdales. On a tracé le diagramme du mouvement de la source O (courbe 1) et la sinusoïde des espaces à l'instant  $t_1$  (courbe 2).



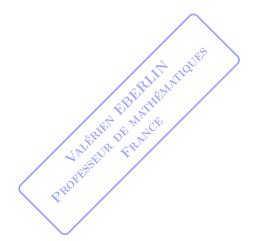
- 1 Détermine la vitesse de propagation des ondes.
- $\mathbf{2}$  Écris l'équation horaire du mouvement de la source O. (1 pt)
- Écris l'équation du mouvement d'un point M situé à 12,5 cm du point O, puis compare le mouvement de M à celui de O. (1,5 pt)
- 4 Détermine l'instant  $t_1$ .


# Partie C : Résolution d'un problème

5

On se propose de déterminer l'intensité de la vitesse  $\overrightarrow{v}$  en un point B pour un solide supposé ponctuel, de masse m = 60 Kg, glissant sur une portion de piste ABC.

AB représente une portion circulaire de rayon r, de centre O tel que  $\theta = (\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{4}$  rad. BC est une partie rectiligne de longueur 2r.


Le long du trajet ABC, le solide est soumis à des forces de frottement qui se réduisent à une force unique d'intensité constante f de même direction que la vitesse  $\overrightarrow{v}$ , mais de sens contraire. Le solide quitte A sans vitesse initiale.



- 1 Exprime:
  - a. Sa vitesse en B en fonction de f, r, m, g et  $\theta$ . (1 pt)
  - **b.** Sa vitesse en C en fonction de f, r, m, g et  $\theta$ . (1 pt)
- 2 Le solide arrive en C avec une vitesse nulle.

Détermine :

- a. L'expression littérale de f. (1 pt)
- **b.** La valeur numérique de f pour  $g = 10 \,\mathrm{m.s^{-2}}$ . (1 pt)
- c. Calcule l'intensité  $v_B$  de la vitesse du solide au point B pour r=5 m. (1 pt)



- ▶ Voir le sujet.
- ▶ Retour au sommaire.

PROFESSELE DE RANGE MANGE

CHIMIE 8 points \_\_\_\_\_

#### Partie A : vérification des connaissances

# Questions à réponse courte

Caractéristique d'une réaction d'estérification : une réaction d'estérification est lente, limitée, athermique et réversible.

L'estérification est la réaction d'un acide carboxylique R-COOH avec un alcool R'-OH. Elle conduit à la formation d'ester et d'eau.

La réaction en sens inverse est appelée hydrolyse de l'ester.

estérification  $H_2O$ acide carboxylique eau alcool

# Texte à trous

PROPESTUR DE MARKET Lorsque l'électron de l'atome d'hydrogène passe d'un niveau d'énergie inférieure à un niveau d'énergie supérieure, il y a absorption de photons.

Appariement (1941)

$$A_1 = B_4$$

$$A_2 = B_3$$

$$A_3 = B_1$$

$$A_4 = B_2$$

- $\succ$  La formule générale des acides carboxyliques est RCOOH. On en déduit que l'acide carboxylique est l'acide benzoïque  $C_6H_5COOH$  avec  $R=C_6H_5$ .
- ➤ La formule générales des esters est : RCOOR'. On en déduit que l'ester est l'éthanoate de méthyle CH<sub>3</sub>COOCH<sub>3</sub> avec R=R'=CH<sub>3</sub>.
- ➤ NH<sub>3</sub> est une base gazeuse, soluble dans l'eau. Son acide conjugué est l'ion ammonium NH<sub>4</sub><sup>+</sup>. La dissociation de l'ammoniac dans l'eau est une réaction équilibrée. L'eau cède un proton qui est capté par l'ammoniac :

Couple 
$$H_2O/HO^-$$
 :  $H_2O$   $\Longrightarrow$   $HO^- + H^+$  Couple  $NH_4^+/NH_3$  :  $NH_3 + H^+$   $\Longrightarrow$   $NH_4^+$   $NH_4^+$   $\Longrightarrow$   $NH_4^+ + HO^-$ 

➤ L'hydroxyde de sodium NaOH, solide ionique soluble dans l'eau, est une base forte. La dissociation de l'hydroxyde de sodium dans l'eau est une réaction totale.

$$NaOH \longrightarrow Na^+ + OH^-$$

#### À savoir

Tous les hydroxydes alcalins, c'est à dire composés d'un cation de métal alcalin (voir 1<sup>ère</sup> colonne du tableau périodique) et d'un anion hydroxyde HO<sup>-</sup>, sont des bases fortes.

# Partie B: Application des connaissances

1 Le nombre de moles présent dans  $m_0 = 10^{-6}$  g de l'isotope  $^{131}_{53}$ I est :  $n = \frac{m_0}{M_{\rm I}}$ .

Or  $n = \frac{N_0}{\aleph_A}$  où  $\aleph_A$  est le nombre d'Avogadro.

D'où 
$$N_0 = \frac{m_0 \times \aleph_A}{M_{\rm I}}.$$

$$N_0 = \frac{10^{-6} \times 6,02.10^{23}}{131}$$
  
  $\approx 4,6.10^{15}$  noyaux.

2 Équation de la désintégration

L'isotope  $^{131}_{53}$ I étant radioactif  $\beta^-$ , l'équation de la désintégration se caractérise par l'émission d'un électron  $^{0}_{-1}$ e :

$$^{131}_{53}I \longrightarrow ^{A'}Y + 0 e$$

De la loi de conservation de nombre de masse, on en déduit que 131 = A' + 0. D'où A' = 131.

De la loi de conservation du nombre de charges, on en déduit que 53 = Z' - 1. D'où Z' = 54.

Donc 
$$_{Z'}^{A'}Y = _{54}^{131}Y$$
.

En utilisant le tableau périodique (voir page annexe), on identifie l'élément Xénon :  $^{131}_{54}\mathrm{Xe}.$ 

D'où l'équation de la désintégration

$$^{131}_{\phantom{0}53}I \longrightarrow ^{131}_{\phantom{0}54}Xe + {^{\phantom{0}0}_{\phantom{0}1}e}$$

**a.** Pour  $N_0$  le nombre initial de noyaux radioactifs, le nombre N(t) de noyaux radioactifs 3 restant est donnée par la relation  $N(t) = N_0 e^{-\lambda t}$ 

L'activité A d'un échantillon radioactif est le nombre moyen de désintégrations s'y produisant par seconde c'est à dire :  $A(t) = -\frac{d N(t)}{dt}$ .

D'où  $A(t) = -\frac{d N(t)}{dt} = -\frac{d N_0 e^{-\lambda t}}{dt} = \lambda N_0 e^{-\lambda t}$ .

Donc  $A(t) = \lambda N(t)$ .

Comme  $N(t) = N_0 e^{-\lambda t}$ , alors  $A(t) = \lambda N_0 e^{-\lambda t}$ .

En posant  $A_0 = \lambda N_0$  on obtient

D'où 
$$A(t) = -\frac{dN(t)}{dt} = -\frac{dN_0 e^{-\lambda t}}{dt}$$

En posant  $A_0 = \lambda N_0$ , on obtient:

$$A(t) = A_0 e^{-\lambda t}$$
 où  $\lambda$  est lié à la demi-vie  $T$  par la relation  $\lambda = \frac{\ln 2}{T}$ 

D'où : 
$$A(t) = A_0 e^{-\frac{\ln 2}{T}t}$$

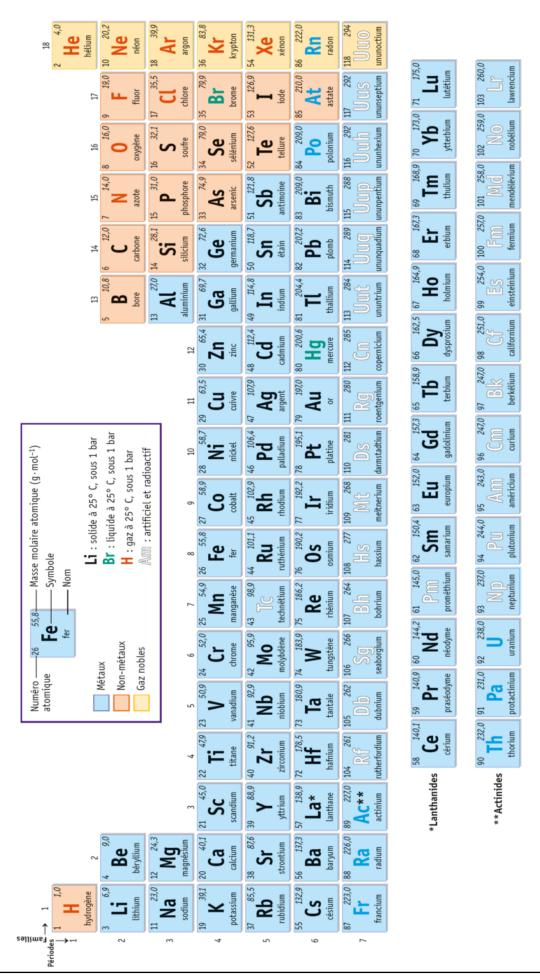
#### Remarque

À la demi-vie T, le nombre de noyaux radioactifs restant est égal  $\frac{N_0}{2}$ 

On a alors :  $\frac{N_0}{2} = N_0 e^{-\lambda T}$ . D'où  $T = \frac{\ln 2}{\lambda}$  ou encore  $\lambda = \frac{\ln 2}{T}$ .

**b.** 
$$A_0 = \lambda N_0 = \frac{\ln 2}{T} N_0.$$

A.N.


 $T = 8 \times 24 \times 3600 = 691200 \text{ s.}$ 

$$A_0 = \frac{\ln 2}{691200} \times 4,6.10^{15} \approx 4,6.10^9 \text{ Bq}.$$

**c.** À  $t = 5 \times 3600 = 18000 \text{ s}$ ,

$$A = A_0 e^{-\frac{\ln 2}{T}t} = 4,6.10^9 e^{-\frac{\ln 2}{691200} \times 18000} = 4,5.10^9 \text{ Bq}.$$



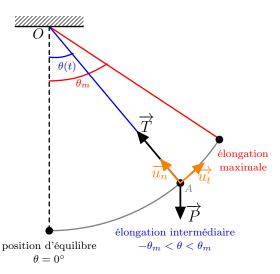


# PHYSIQUE 12 points

# Partie A : vérification des connaissance

# Questions à choix multiples

#### $\mathbf{a.} \ \mathbf{a_2}$


Un pendule simple est constitué par fil inextensible de longueur l et de masse négligeable au bout duquel est accroché un objet de masse m et de petites dimensions (objet ponctuel).

La période d'oscillation d'un pendule simple est donnée par la formule suivante :

$$T = 2\pi \sqrt{\frac{l}{g}}$$

où l est la longueur du fil et g l'intensité de pesanteur.

La période T ne dépend donc pas de la masse m accrochée mais uniquement de la longueur l du fil.



Système : point de masse m.

Référentiel : c'est le référentiel du sol supposé galiléen.

Bilan des forces :  $\overrightarrow{T}$ ,  $\overrightarrow{P}$ .

D'après le théorème du centre d'inertie TCI :  $\overrightarrow{P} + \overrightarrow{T} = m \overrightarrow{a}$ .

En projetant sur l'axe  $(A, \overrightarrow{u_t})$  du repère de Frenet  $(A, \overrightarrow{u_t}, \overrightarrow{u_n})$ , on a :  $-mg \sin \theta + 0 = ma$ .

Or  $a = l\ddot{\theta}$ . D'où :  $-mg\sin\theta = ml\ddot{\theta}$  ou encore  $\ddot{\theta} + \frac{g}{l}\sin\theta = 0$ .

Le système étant étudié pour des oscillations de faibles amplitudes, on a  $\sin \theta \approx \theta$ .

On obtient l'équation du mouvement d'un oscillateur harmonique :  $\ddot{\theta} + \frac{g}{7}\theta = 0$  (\*\*),

La solution de cette équation différentielle est de la forme :  $\theta(t) = \theta_m \cos\left(\frac{2\pi}{T}t + \varphi\right)$  où

 $\theta_m$  est l'amplitude des oscillations (rad);  $\varphi$  est la phase à l'origine des dates (rad) et T la période propre du pendule simple.

$$\dot{\theta}(t) = -\frac{2\pi}{T}\theta_m \sin\left(\frac{2\pi}{T}t + \varphi\right)$$

$$\ddot{\theta}(t) = -\left(\frac{2\pi}{T}\right)^2 \underbrace{\theta_m \cos\left(\frac{2\pi}{T}t + \varphi\right)}_{\theta(t)} = -\left(\frac{2\pi}{T}\right)^2 \theta(t) + \left(\frac{2\pi}{T}\right)^2 \theta(t) = 0.$$

$$\ddot{\theta}(t) + \left(\frac{2\pi}{T}\right)^2 \theta(t) = 0$$

En identifiant l'équation précédente avec l'équation différentielle  $\ddot{\theta} + \frac{g}{l}\theta = 0$  (\*\*),

on en déduit que :  $\left(\frac{2\pi}{T}\right)^2 = \frac{q}{l}$  D'où  $T = 2\pi\sqrt{\frac{l}{q}}$ .

#### $b. b_3$

Pour un circuit en série RLC, alimenté par un générateur de tension alternative sinusoïdale u(t), de valeur efficace constante U, de pulsation  $\omega$  variable, l'intensité efficace du courant traversant ce circuit est :

$$I = \frac{U}{Z} = \sqrt{\frac{1}{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$

À la résonance, les effets des réactances s'annulent :  $L\omega = \frac{1}{C\omega} \iff \omega = \omega_0 = \frac{1}{\sqrt{LC}}$ 

L'impédance du circuit est alors à son minimum et est simplement égale à la résistance du circuit : Z = R.

La valeur efficace du courant est donc maximale et vaut  $I = I_0 = \frac{U}{R}$ .

#### **2.** a)

Faux.

La cinématique a pour objet l'étude des mouvements des corps en fonction du temps, sans se préoccuper de leurs causes (forces).

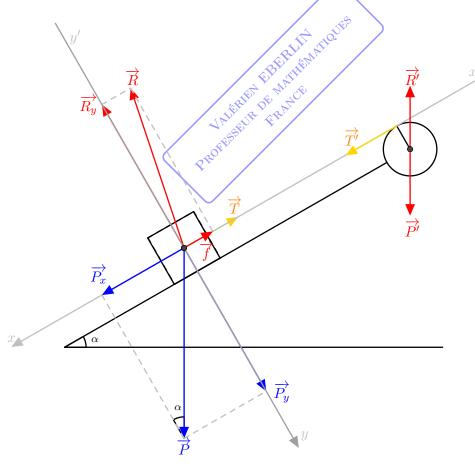
#### 2. b)

Faux.

Un ébranlement est dit transversal si sa direction est perpendiculaire à la direction de propagation.

#### 2. c)

Vrai.


Un système est dit en chute libre si la seule force qui s'exerce sur lui est son poids. Cela signifie qu'en l'absence de frottements avec l'air, si l'on lâche un objet lourd et un objet léger en même temps, ils arriveront au même moment au sol.

#### 2. d)

Vrai



Partie B: application des connaissances



a. Nous allons proposer deux méthodes permettant de déterminer l'accélération du centre de gravité de A.

Le système est constitué du solide A de masse M et du cylindre de moment d'inertie J. 1<sup>ère</sup> méthode : méthode dynamique

- Système étudié : solide de masse M.

$$\overrightarrow{\mathrm{TCI}} : \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{T} = M \overrightarrow{a}.$$

En projetant suivant l'axe (xx'), on a :  $P_x - f - T = Ma$ .

Ou encore  $Mg \sin \alpha - f - T = Ma$ .

D'où 
$$T = Mg \sin \alpha - Ma - f$$
 (\*).

Système étudié : cylindre

RFD (rotation) : 
$$\mathcal{M}_{\Delta}(\overrightarrow{P}') + \mathcal{M}_{\Delta}(\overrightarrow{R}') + \mathcal{M}_{\Delta}(\overrightarrow{T}') \approx J \overrightarrow{\theta}$$

 $\overrightarrow{RFD} \text{ (rotation)}: \mathscr{M}_{\Delta}(\overrightarrow{P'}) + \mathscr{M}_{\Delta}(\overrightarrow{R'}) + \mathscr{M}_{\Delta}(\overrightarrow{T'}) = J\overrightarrow{\theta}$  Or  $\mathscr{M}_{\Delta}(\overrightarrow{P'}) = \mathscr{M}_{\Delta}(\overrightarrow{R'}) = 0$  car les deux forces  $\overrightarrow{P'}$  et  $\overrightarrow{R'}$  passent par l'axe de rotation du cylindre.

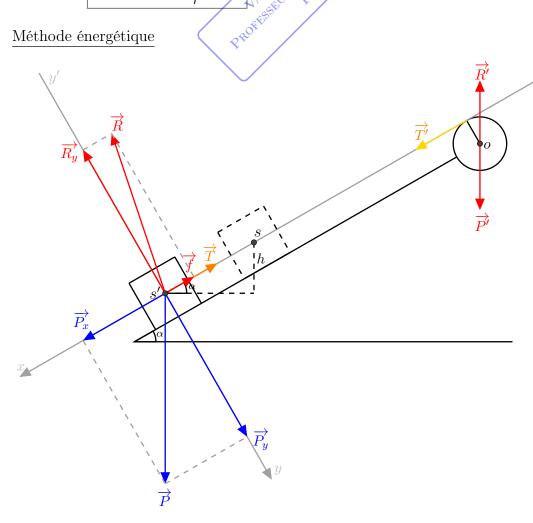
Donc 
$$\mathcal{M}_{\Delta}(\overrightarrow{T'}) = J\ddot{\theta}$$
 avec  $\ddot{\theta} = \frac{a}{r}$ 

Donc 
$$\mathcal{M}_{\Delta}(\overrightarrow{T'}) = J\ddot{\theta}$$
 avec  $\ddot{\theta} = \frac{a}{r}$ .

Ce qui donne :  $T' \times r = J\frac{a}{r}$ .

D'où  $T' = J\frac{a}{r^2}$  (\*\*).

D'où 
$$T' = J \frac{a}{r^2}$$
 (\*\*).


Le fil étant inextensible et de masse négligeable, on en déduit que T=T'.

Il en résulte des égalités (\*) et (\*\*) que :  $J\frac{a}{r^2} \neq Mg\sin\alpha - Ma - f$ 

Ou encore : 
$$a\left(M + \frac{J}{r^2}\right) = Mg\sin\alpha - f$$
. Or  $f = \frac{1}{10}P = \frac{1}{10}Mg$  D'où 
$$a = \frac{Mg\left(\sin\alpha - \frac{1}{10}\right)}{M + \frac{J}{r^2}}$$

D'où 
$$a = \frac{Mg\left(\sin\alpha - \frac{1}{10}\right)}{M + \frac{J}{r^2}}$$

Méthode énergétique



$$\Delta E_C = \sum W_{Fext} + \underbrace{\sum W_{int}}_{=0}$$

$$\Delta E_C = W_{\overrightarrow{P}} + W_{\overrightarrow{R}} + \underbrace{W_{\overrightarrow{P'}}}_{=0} + \underbrace{W_{\overrightarrow{R'}}}_{=0}$$

$$\frac{1}{2}Mv^2 + \frac{1}{2}J.\dot{\theta}^2 = Mgh - f.l \text{ où l'on a posé } ss' = l. \text{ Or } h = l\sin\alpha \text{ et } \dot{\theta} = \frac{v}{r}$$

On obtient : 
$$\frac{1}{2}Mv^2 + \frac{1}{2}J\frac{v^2}{r^2} = Mgl\sin\alpha - ft$$

On obtient : 
$$\frac{1}{2}Mv^2 + \frac{1}{2}J\frac{v^2}{r^2} = Mgl\sin\alpha - ft$$
Ou en encore  $\frac{1}{2}v^2\left(M + \frac{J}{r^2}\right) = \ell(Mg\sin\alpha - f)$ 

En dérivant membre à membre la dérnière équation ci-dessus, on a :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[ \frac{1}{2} v^2 \left( M + \frac{J}{r^2} \right) \right] = \frac{\mathrm{d}}{\mathrm{d}t} \left[ l(Mg \sin \alpha - f) \right]$$

Les grandeurs M, J, g,  $\alpha$ , r et f étant constantes, on obtient :

$$\frac{1}{2}\left(M + \frac{J}{r^2}\right)\frac{\mathrm{d}v^2}{\mathrm{d}t} = (Mg\sin\alpha - f)\frac{\mathrm{d}l}{\mathrm{d}t}$$

$$\frac{1}{2}\left(M + \frac{J}{r^2}\right)2v.\frac{\mathrm{d}v}{\mathrm{d}t} = (Mg\sin\alpha - f)\frac{\mathrm{d}l}{\mathrm{d}t}. \text{ Or } \frac{\mathrm{d}v}{\mathrm{d}t} = v \text{ et } f = \frac{1}{10}Mg$$

D'où 
$$\frac{1}{2}\left(M + \frac{J}{r^2}\right)2v.a = \left(Mg\sin\alpha + \frac{1}{10}Mg\right)v.$$

Ou encore 
$$\left(M + \frac{J}{r^2}\right) . a = Mg \left(\sin \alpha - \frac{1}{10}\right).$$

Ou encore 
$$\left(M + \frac{J}{r^2}\right) . a = Mg \left(\sin\alpha - \frac{1}{10}\right)$$
.

On en déduit que : 
$$a = \frac{Mg \left(\sin\alpha - \frac{1}{10}\right)}{M + \frac{J}{r^2}}$$
.

**b.** Comme 
$$a = \frac{Mg\left(\sin\alpha - \frac{1}{10}\right)}{M + \frac{J}{r^2}} = \frac{1 \times 9, 8 \times 0, 4}{1 + \frac{9.10^{-4}}{(6.10^{-2})^2}} = 3,136 \,\mathrm{m\cdot s^{-2}}$$
 est constante et

strictement positive, on en déduit que le mouvement de A est rectiligne uniformément accéléré (MRUA).

$$T = J \frac{a}{r^2} = 9.10^{-4} \times \frac{3,136}{(6.10^{-2})^2} = 7,84.10^{-1} \text{N}$$

- Système : corps de masse A
  - Référentiel : Terrestre Supposé Galiléen (TSG)
  - Bilan des forces  $: \overrightarrow{P}, \overrightarrow{R}$

D'après le Théorème du Centre d'Inertie (TCI) :  $\overrightarrow{P} + \overrightarrow{R} = M \overrightarrow{a}$ 

En projetant suivant l'axe (xx'), on a :  $Mg\sin\alpha - f = Ma'$ .

Ou encore 
$$Mg \sin \alpha - \frac{1}{10}Mg = Ma'$$

D'où 
$$a' = g\left(\sin\alpha - \frac{1}{10}\right)$$

$$\underline{\text{A.N}}: a' = 9,80 \times \left(\sin(30^\circ) - \frac{1}{10}\right) = 3,92 \,\text{m} \cdot \text{s}^{-2}$$

# Partie C: Résolution d'un problème $\frac{hc}{\lambda_0}$ . $\frac{A.N.}{W_0} = \frac{6,62.10^{-34} \times 3.10^8}{0,66.10^{-6}} = 3,0.10^{-19} \, \mathrm{J}.$

$$W_0 = \frac{hc}{\lambda_0}.$$

$$W_0 = \frac{6,62.10^{-34} \times 3.10^8}{0.66 \cdot 10^{-6}} = 3,0.10^{-19} \text{ J}.$$

$$2 W = \frac{hc}{\lambda}.$$

$$\underline{\text{A.N.}}: W = \frac{6,62.10^{-34} \times 3.10^8}{0,4.10^{-6}} = 4,965.10^{-19} \text{ J.}$$

3 Comme  $W > W_0$ , l'énergie du photon incident permet d'extraire un électron et le surplus énergétique est transmis à l'électron sous forme d'énergie cinétique.

• 
$$W = W_0 + E_{cmax}$$
. D'où  $E_{cmax} = W_0$ .

A.N.: 
$$E_{cmax} = 4,965.10^{-19} - 3,0.10^{-19} \neq 1,965.10^{-19}$$
 J

$$\underline{A.N.}: E_{cmax} = 4,965.10^{-19} - 3,0.10^{-19} = 1,965.10^{-19} \text{ J.}$$

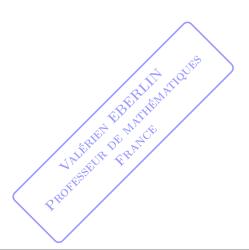
$$\bullet \text{ Or } E_{cmax} = \frac{1}{2} m_e v_{max}^2. \quad \text{D'où } v_{max} = \sqrt{\frac{2E_{cmax}}{m_e}}.$$

A.N.: 
$$v_{max} = \sqrt{\frac{2 \times 1,965.10^{-19}}{9.10^{-31}}} = 6,608.10^5 \,\mathrm{m \cdot s^{-1}}.$$

4

4. 1. La puissance  $\mathscr{P}$  du rayonnement est l'énergie qu'il transfère en 1 seconde. Si N est le nombre de photons transportés par un seconde par le rayonnement monochromatique alors  $\mathscr{P}$  et N sont liés par la relation :

$$\mathscr{P} = NW$$
 D'où  $N = \frac{\mathscr{P}}{W}$ .


A.N.: 
$$N = \frac{7,4.10^{-7}}{4,965.10^{-19}} = 1,490.10^{12} \text{ photons/seconde.}$$

4. 2. L'intensité de saturation du courant photoélectrique est liée au nombre n d'électrons émis par seconde, par la cellule photoélectrique, par la relation :  $I_S = ne$  où e est la charge électrique de l'électron.

Or le nombre de photons émis par seconde qui provoquent l'émission d'électrons est égal au nombre d'électrons émis par seconde par la cellule photoélectrique.

D'où 
$$r = \frac{n}{N} = \frac{I_S}{e \times N}$$
.

A.N.: 
$$r = \frac{2,4.10^{-9}}{1,6.10^{-19} \times 1,490.10^{12}} = 1,007.10^{-2} = \frac{1,007}{100} = 1,007\%$$



# Corrigé bac 2018 - Série C

▶ Voir le sujet.

► Retour au sommaire.

VALERIER DE MAICE

CHIMEE 8 points

#### Partie A : vérification des connaissances

# 1 Questions à alternative vrai ou faux

#### **1. a)** Vrai.

Une méthode pour retenir ce qu'est un oxydant et ce qu'est un réducteur :

<u>R</u>éducteur ..... <u>R</u>end des électrons. Oxydant ..... Obtient des électrons.

De cette méthode mnémotechnique, on en déduit les demi-équations électroniques sont :

Réducteur  $\longrightarrow$  Oxydant  $+ n e^-$  (1)

Oxydant +  $ne^- \longrightarrow Réducteur$  (2)

Dans l'équation (1), l'espèce initiale a été oxydée : c'est donc une oxydation.

Dans l'équation (2), l'espèce initiale a été réduite : c'est donc une réduction.

#### **1. b**) Vrai

• Une solution électrolytique est une solution qui contient des ions. C'est la présence de ces espèces chargées (cations et anions) qui rend cette solution conductrice d'électricité.

Dans une solution électrolytique, les interactions entre les ions sont généralement très fortes et s'accompagne parfois d'une hausse de température.

Exemples: sels, acides, et bases dans l'eau,

• Une solution non-électrolytique est une solution dont les composants ne sont pas chargés. Elle ne laisse pas passer le courant électrique. Dans une telle solution, les interactions entre molécules de même espèce ou d'espèces différentes sont toutes identiques. La loi de Raoult qui n'est qu'approximative peut s'appliquer.

#### **1. c**) Faux

Le rendement d'une réaction d'hydrolyse est de 40% lorsqu'il s'agit d'un alcool secondaire. La réaction d'un acide carboxylique R-COOH avec un alcool R'-OH conduit à la formation d'ester et d'eau. Cette réaction est appelée estérification.

La réaction en sens inverse entre un ester et l'eau qui conduit à un acide carboxylique et à

La réaction d'estérification entre un acide carboxylique et un alcool est lente et limitée. La réaction d'hydrolyse d'un ester est lente et limitée.

#### Tableau de rendement en fonction de la classe de l'alcool

| Classe                                                                            | alcool primaire    | alcool secondaire  | alcool tertiaire   |
|-----------------------------------------------------------------------------------|--------------------|--------------------|--------------------|
| Estérification<br>(1 mole RCOOH et 1 mole de ROH)                                 | 67% moles d'ester  | 60% moles d'ester  | 5% moles d'ester   |
| $\begin{array}{c} {\rm Hydrolyse} \\ {\rm (1moleRCOORet1moledeH_2O)} \end{array}$ | 33% moles d'alcool | 40% moles d'alcool | 95% moles d'alcool |

#### Reconnaître la classe d'un alcool :

Un alcool est dit "primaire" si l'atome de carbone qui porte le groupe hydroxyle (-OH) est relié aussi à deux atomes d'hydrogène. Sa formule générale est :

R - C - OH

Un alcool est dit "secondaire" si l'atome de carbone qui porte le groupe hydroxyle (-OH) est relié seulement à un atome d'hydrogène. Sa formule générale est :

où R, R' et R" ne sont pas des atomes d'hydrogène.

Un alcool est dit "tertiaire" si l'atome de carbone qui porte le groupe hydroxyle (-OH) n'est relié à aucun atome d'hydrogène. Sa formule générale est

R - C - R'

#### **1. d**) Faux

#### Un petit rappel de cours

Pour une réaction impliquant deux réactifs, A et B tels que aA + bB = Produits, la vitesse de réaction est proportionnelle au produit des concentrations des réactifs affectées chacune d'un exposant :  $v = k[A]^{\alpha} \times [B]^{\beta}$ . La constante de proportionnalité k, dépend de la température et est appelée constante de vitesse.

Les exposants  $\alpha$  et  $\beta$  sont les ordres partiels de la réaction.

La somme de  $\alpha$  et  $\beta$  est l'ordre global de la réaction.

Les ordres de réaction ne sont pas nécessairement les coefficients stéchiométriques de l'équation chimique. Ils ne peuvent être déterminés que de façon expérimentale.

Si  $v = k[A]^{\alpha} \times [B]^{\beta}$  est une vitesse de réaction d'ordre l'alors  $\alpha = 1$  et  $\beta = 0$  ou si  $\alpha = 0$  $\begin{array}{c} \text{produits.} \\ \text{Donc } v \text{ s'écrit } \colon v = k[\mathbf{A}]. \\ \text{Or } v = -\frac{1}{a}\frac{d[\mathbf{A}]}{dt} \quad \text{(a étant le coefficient stechiométrique de A dans la réaction chimique aA} \longrightarrow \text{produits}). \\ \text{On en déduit que } -\frac{1}{a}\frac{d[\mathbf{A}]}{dt} = k \times [\mathbf{A}]. \\ \text{D'où } \colon \begin{array}{c} d[\mathbf{A}] \\ \overline{[\mathbf{A}]} = -ka\,dt. \end{array}$ et  $\beta = 1$ . En d'autres termes, la réaction chimique associée n'admet qu'un seul réactif et

En intégrant membre à membre l'égalité précédente,  $\int_0^t \frac{d[A]}{[A]} = -\int_0^t ka dt$ 

On obtient la loi intégrée de la réaction :  $\ln [A] / \ln [A]_0 = -kat$ 

Le temps de demi-réaction  $t_{\underline{1}}$  d'un réactif est le temps requis pour lequel la concentration de ce réactif diminue de moitié:

Pour  $t = t_{\frac{1}{2}}$ ,  $[A] = \frac{[A]_0}{2}$ 

La loi intégrée de la réaction appliquée à  $t=t_{\frac{1}{2}}$ , devient :  $\ln\frac{[A]_0}{2}-\ln[A]_0=-ka\,t_{\frac{1}{2}}$ .  $\ln[A]_0-\ln 2-\ln[A]_0=-ka\,t_{\frac{1}{2}}$ . D'où  $t_{\frac{1}{2}}=\frac{\ln 2}{ka}$ .

Pour une réaction d'ordre 1, le temps de demi-réaction vaut  $t_{\frac{1}{2}} = \frac{\ln 2}{ka}$  et non  $t_{\frac{1}{2}} = \frac{\ln 2}{k[A]_0}$ .

#### Texte à trous 2

L'ensemble des radiations émises lors des transitions aboutissant au même niveau d'énergie constitue une série de raies.

# Question à réponse courte

La relation qui lie le pH au pKa est : pH = pKa +  $log \frac{[base]}{[acide]}$ .

En effet, si l'on note par AH la formule de l'acide et A la formule de l'espèce qui a perdu un proton H<sup>+</sup>, alors la demi-équation de réaction s'écrit :

$$\begin{array}{cccc} AH & + & H_2O \longrightarrow & A^- + H_3O^+ \\ & & \text{base} \end{array}$$

On a : 
$$Ka = \frac{[A^-][H_3O^+]}{[AH]}$$
.  
 $-\log Ka = -\log[H_3O^+] - \log[A^-] + \log[AH]$ .

$$-\log Ka = -\log[H_3O^+] - \log[A^-] + \log[AH].$$

$$pKa = pH - \log [A^{-}] + \log [AH]$$

$$D'où: pH = pKa + \log \frac{[A^{-}]}{[AH]} = pKa + \log \frac{[base]}{[acide]}$$

# Partie B: application de connaissances

1 
$$C_1 = \frac{n_{\text{KMNO}_4}}{V} = \frac{m}{M_{\text{KMnO}_4}V}$$
 où  $M_{\text{KMnO}_4}$  est la masse molaire de KMnO<sub>4</sub>.

$$\begin{aligned} & \underbrace{\mathbf{M_{KMnO4}}}_{\text{KMnO4}} = \mathbf{M_{K}} + \mathbf{M_{Mn}} + 4\,\mathbf{M_{O}} = 39 + 55 + 4 \times 16 = 158\,\text{g/mol.} \\ & \mathbf{D'où} \ C_1 = \frac{19,75}{158 \times 0,25} = 0,5\,\,\text{mol/L.} \end{aligned}$$

D'où 
$$C_1 = \frac{19,75}{158 \times 0,25} = 0,5 \text{ mol/L}.$$

de molécules  $H_2O$  qu'il y a d'ions  $H^+$ 

#### 2

a.

Méthode pour équilibrer une demi-équation redox en milieu acide

Étape 1 > Équilibrer les éléments à l'exception de O et H

Étape 2 > Équilibrer les O en ajoutant des molécules H2O

Étape 3 > Équilibrer les H en ajoutant des ions H

Étape 4 > Ajouter de part et d'autre autant de molécules H<sub>2</sub>O qu'il y a d'ions H<sup>+</sup>

Étape 6 > Équilibrer les charges avec les e

Étape 5  $\triangleright$  Remplacer  $H_2O + H^+$  par  $H_3O^+$ 

#### Équilibre de la demi-équation du couple $Q_2/H_2O_2$ en milieu acide

 $H_2O_2$   $\stackrel{\text{\'etape 1}}{\Longrightarrow}$  : on équilibre les éléments à l'excep-

 $H_2O_2$   $\Longrightarrow$   $O_2+2\,H^++2\,e^ \underline{\underline{\acute{E}tape\ 4}}$  : on équilibre la charge en ajoutant des électrons

D'où  $H_2O_2 + 2H_2O \Longrightarrow O_2 + 2H_3O^+ + 2e^-$  Étape 6 : On remplace  $H_2O + H^+$  par  $H_3O^+$ 

#### Équilibre de la demi-équation du couple ${\rm MnO_4}^-/{\rm Mn^{2+}}~$ en milieu acide

 $\mathrm{MnO_4}^ \Longrightarrow$   $\mathrm{Mn^{2+}}$   $\underline{\mathrm{\acute{E}tape\ 1}}: \mathrm{on\ \acute{e}quilibre\ les\ \acute{e}l\acute{e}ments\ \grave{a}\ l'exception\ de\ O\ et\ H\ (ici,\ c'est\ d\acute{e}j\grave{a}\ \acute{e}quilibr\acute{e})}$ 

 $\mathrm{MnO_4}^ \Longrightarrow$   $\mathrm{Mn^{2+}} + 4\mathrm{H_2O}$   $\underline{\mathrm{\acute{E}tape}\ 2}:$  on équilibre les O en ajoutant des molécules  $\mathrm{H_2O}$ 

 $\mathrm{MnO_4}^- + 8\mathrm{H}^+$   $\Longrightarrow$   $\mathrm{Mn^{2+}} + 4\mathrm{H_2O}$   $\stackrel{\mathrm{\acute{E}tape\ 3}}{=}$  : on équilibre les H en ajoutant des

 $\mathrm{MnO_4}^- + 8\mathrm{H}^+ + 5\mathrm{e}^- \qquad \Longrightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O} \qquad \qquad \underbrace{\mathtt{\acute{E}tape}\ 4} : \mathrm{on}\ \mathtt{\acute{e}quilibre}\ \mathrm{la\ charge\ en\ ajoutant}$ 

 $MnO_4^- + 8H^+ + 8H_2O + 5e^- \quad \Longrightarrow \quad Mn^{2+} + 4H_2O + 8H_2O \quad \text{\'etape 5: On ajoute de part et d'autre autant}$ 

D'où :  $MnO_4^- + 8H_3O^+ + 5e^- \rightleftharpoons Mn^{2+} + 12H_2O$  Étape 6 : On remplace  $H_2O + H^+$  par  $H_3O^+$ 

#### b. Équation bilan de la réaction d'oxydoréduction

Une réaction d'oxydoréduction est une réaction chimique au cours de laquelle se produit un transfert d'électrons. Le réducteur  $H_2O_2$  doit libérer autant d'électrons que l'oxydant  $MnO_4^-$  est capable d'en capter.

$$\begin{cases} H_2O_2 + 2H_2O \Longrightarrow O_2 + 2H_3O^+ + 2e^- \\ MnO_4^- + 8H_3O^+ + 5e^- \Longrightarrow Mn^{2+} + 12H_2O \end{cases} \times 5$$

En sommant les demi-équations électroniques, on obtient l'équation-bilan.

$$\begin{cases} 5 \, \mathrm{H_2O_2} + 10 \, \mathrm{H_2O} &\Longrightarrow 5 \, \mathrm{O_2} + 10 \, \mathrm{H_3O^+} + 10 \, \mathrm{e^-} \\ 2 \, \mathrm{MnO_4^-} + 16 \, \mathrm{H_3O^+} + 10 \, \mathrm{e^-} &\Longleftrightarrow 2 \, \mathrm{Mn^{2+}} + 24 \, \mathrm{H_2O} \\ 2 \, \mathrm{MnO_4^-} + 5 \, \mathrm{H_2O_2} + 6 \, \mathrm{H_3O^+} &\longrightarrow 2 \, \mathrm{Mn^{2+}} + 5 \, \mathrm{O_2} + 14 \, \mathrm{H_2O} \end{cases} \checkmark$$

À l'équivalence, les deux espèces chimiques ont réagi dans des proportions stœchiométriques : cela signifie qu'on a versé juste la quantité de réactif titrant nécessaire à faire réagir la totalité du réactif titre.

Notons  $n_1$ , le nombre de moles de permanganate de potassium et  $n_2$  le nombre de moles d'eau oxygénée à l'équivalence.

De l'équation bilan :  $2 \,\mathrm{MnO_4}^- + 5 \,\mathrm{H_2O_2} + 6 \,\mathrm{H_3O^+} \longrightarrow 2 \,\mathrm{Mn^{2+}} + 5 \,\mathrm{O_2} + 14 \,\mathrm{H_2O},$  On a :

$$5n_1=2n_2.$$

$$5C_1V_1 = 2C_2V_2.$$

$$C_2 = \frac{5C_1V_1}{2V_2}.$$

#### $\underline{\mathbf{A.N}}$

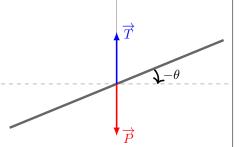
$$C_2 = \frac{5 \times 0, 5 \times 8.10^{-3}}{2 \times 10.10^{-3}} = 1 \text{ mol/L}$$



# PHYSIQUE 12 points

# Partie A : vérification des connaissances

# Questions à choix multiples


#### 1.1 = c

On considère un pendule de torsion constitué d'un fil de constante de torsion c et d'une tige fixée en son centre. Si l'on écarte la tige de sa position d'équilibre d'un angle  $\theta$  et qu'on la libère, elle se met à osciller autour de sa position d'équilibre.

Ce fil exerce un couple de rappel proportionnel à l'angle de torsion qu'on lui impose :  $\mathcal{M}_t = -c \theta$ .

La tige est soumise à des forces suivantes :

- le poids  $\overrightarrow{P}$
- la tension  $\overrightarrow{T}$  exercée par le fil
- du couple de torsion de moment :  $\mathcal{M}_t = -c\,\theta$



 $(\Delta)$ 

D'après la relation fondamentale de la dynamique de rotation au système :

$$\mathcal{M}_{\Delta}(\overrightarrow{P}) + \mathcal{M}_{\Delta}(\overrightarrow{T}) + \mathcal{M}_{c} = J_{\Delta}.\ddot{\theta}$$

 $\mathcal{M}_{\Delta}(\overrightarrow{P}) + \mathcal{M}_{\Delta}(\overrightarrow{T}) + \mathcal{M}_{c} = J_{\Delta}.\ddot{\theta}.$  Le poids  $\overrightarrow{P}$  et la tension  $\overrightarrow{T}$  ayant leur ligne d'action confondue avec l'axe  $\Delta$ , n'ont donc pas d'effet de rotation. On en déduit que :  $\mathcal{M}_{\Delta}(\overrightarrow{P}) = 0$  et  $\mathcal{M}_{\Delta}(\overrightarrow{T}) = 0$ .

D'où 
$$\mathcal{M}_c = J_{\Delta}.\ddot{\theta}$$
  
 $-c\theta = J_{\Delta}.\ddot{\theta} \iff J_{\Delta}.\ddot{\theta} + c\theta = 0 \iff \ddot{\theta} + \frac{c}{J_{\Delta}}\theta = 0$  (\*\*)

La solution de cette équation différentielle est de la forme :  $\theta(t) = \theta_m \cos\left(\frac{2\pi}{T_0}t + \varphi_0\right)$  où  $\theta_m$  est l'amplitude des oscillations (rad);  $\varphi_0$  est la phase à l'origine des dates (rad) et  $T_0$  la période propre

$$\dot{\theta}(t) = -\frac{2\pi}{T_0} \theta_m \sin\left(\frac{2\pi}{T_0}t + \varphi_0\right).$$

$$\ddot{\theta}(t) = -\left(\frac{2\pi}{T_0}\right)^2 \theta_m \cos\left(\frac{2\pi}{T_0}t + \varphi_0\right) = -\left(\frac{2\pi}{T_0}\right)^2 \theta(t)$$

$$\ddot{\theta}(t) + \left(\frac{2\pi}{T_0}\right)^2 \theta(t) = 0.$$
Figure 18. The state of the property of the prop

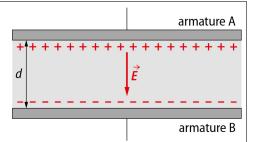
$$\ddot{\theta}(t) + \left(\frac{2\pi}{T_0}\right)^2 \theta(t) = 0$$

En identifiant l'équation précédente avec l'équation différentielle  $\ddot{\theta} + \frac{c}{J_{\Delta}}\theta = 0$  (\*\*),

on en déduit que : 
$$\left(\frac{2\pi}{T_0}\right)^2 = \frac{c}{J_\Delta}$$
. D'où  $T_0 = 2\pi\sqrt{\frac{J_\Delta}{c}}$ .

La pulsation propre d'un pendule de torsion est donc :  $\omega = \frac{2\pi}{T_0} = \sqrt{\frac{c}{I_0}}$ 

#### 1.2 = c


Un circuit RLC en série est dit en résonance lorsque les effets de la réactance inductive  $X_L$  et de la réactance capacitive  $X_C$  s'annulent, c'est-à-dire lorsque :  $X_L = X_C \iff L\omega = \frac{1}{c\omega}$ . L'impédance du circuit  $Z = \sqrt{R^2 + (X_L - X_C)^2}$  est alors à son minimum et est simplement égale à la résistance du circuit (Z = R).

#### 1.3 = c

Soit un condensateur plan composé de deux plaques planes distantes de d, alimenté par une tension constante U (en V) à ses bornes. Entre les deux armatures du condensateur règne un champ électrique uniforme  $\overrightarrow{E}$  perpendiculaire aux armatures et orienté vers l'armature chargée négativement.

$$E = \frac{U}{d} \quad (\text{en V} \cdot \text{m}^{-1})$$

À l'extérieur de deux plans de charges opposées, le champ électrique est nul.



#### Condensateur plan

Un condensateur plan est formé de deux armatures métalliques, lames conductrices planes et parallèles, proches l'une de l'autre et séparées par un isolant comme l'air ou le vide.

#### 1.4 = c

Un mouvement est rectiligne et uniformément varié lorsque la trajectoire est une portion de droite et la valeur de l'accélération  $\overrightarrow{a}$  est constante.

Le mouvement rectiligne est accéléré si le vecteur  $\overrightarrow{a}$  est dans le même sens que le vecteur vitesse  $\overrightarrow{v}$ . D'où  $\overrightarrow{v}$ .  $\overrightarrow{a} = v.a > 0$ .

# <u>Texte à trous</u>

Un système est dit conservatif lorsque son énergie mécanique reste constante au cours du temps.

# Partie B: application des connaissances

1 a. Valeur de la période

$$T = \frac{0.015}{3} \times 4 = 0.02 \text{ s.}$$

Valeur de l'amplitude est

$$a = 2 \,\mathrm{mm} = 2.10^{-3} \;\mathrm{m}.$$

**b.** Le point M commence à vibrer avec un retard par rapport à S de :

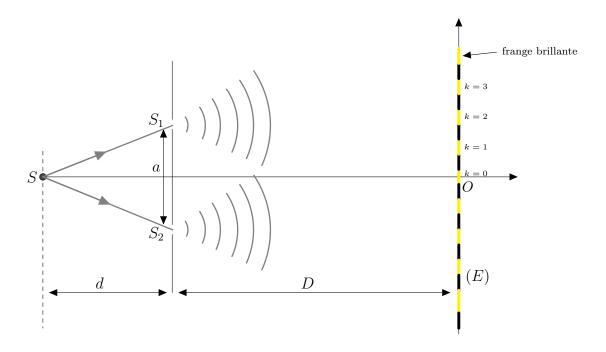
$$\theta = \frac{0,015}{3} \times 2 = 0,01 = \frac{T}{2} \text{ s.}$$

- c. D'après les courbes  $y_S(t)$  et  $y_M(t)$ ,
  - les mouvements de S et de M ont la même fréquence

- les maximums de  $y_S(t)$  coïncident avec les minimums de  $y_M(t)$ 

On en déduit que les points S et M sont en opposition de phase.

**d.** Équation horaire  $y_S(t)$ 


Le point S est animé d'un mouvement vibratoire sinusoïdal d'équation horaire :  $y_S(t) = 2.10^{-3} \sin(ft) = 2.10^{-3} \sin(\frac{2\pi}{T}t) = 2.10^{-3} \sin(100\pi t)$  (m)

Équation horaire  $y_M(t)$ 

Le point M reproduit le mouvement de S avec un retard de  $\theta$ .

D'où : 
$$y_M(t) = y_S(t - \theta) = 2.10^{-3} \sin\left[\frac{2\pi}{T}\left(t - \frac{T}{2}\right)\right] = 2.10^{-3} \sin(100\pi t - \pi)$$
 (m).

# Partie C: résolution du problème



1

- 1. 1. a. La formule donnant la position des franges brillantes sur l'écran est donnée par :  $x_k = \frac{k\lambda_1 D}{a} \quad \text{où } k \in \mathbb{Z}$ 
  - **b.** La distance entre deux franges brillantes consécutives est :

$$x_2 - x_1 = x_3 - x_2 = x_4 - x_3 = \dots = \frac{\lambda_1 D}{a}.$$

D'où l'interfrange  $i = \frac{\lambda_1 D}{a}$ .

1. 2. a. La distance séparant 11 franges consécutives brillantes est égale à  $9,6.10^{-3}$  m. Or à deux franges brillantes consécutives correspondent une interfrange. On en déduit qu'il y a 10 interfranges et  $10i = 9,6.10^{-3}$  m.

D'où 
$$i = \frac{9,6.10^{-3}}{10} = 9,6.10^{-4}$$
 m.

**b.** De l'égalité  $i = \frac{\lambda_1 D}{a}$ , on en déduit que :  $\lambda_1 = \frac{i \times a}{D}$ .

A.N:

$$\lambda_1 = \frac{9, 6.10^{-4} \times 10^{-3}}{2} = 4, 8.10^{-7} \text{ m}.$$

2 La formule donnant la position de la 5<sup>e</sup> frange brillante de la radiation de longueur d'onde  $\lambda_1 \text{ est} : x_5 = \frac{5\lambda_1 D}{a}.$  $\lambda_1$  est :  $x_5 = \frac{5\lambda_1 D}{a}$ . La formule donnant la position de la 4º frange brillante de la radiation de longueur d'onde

 $\lambda_2 \text{ est} : y_4 = \frac{4\lambda_2 D}{a}.$ 

Les deux franges se superposent si et seulement si  $x_5 = y_4$ .

$$\frac{5\lambda_1 D}{a} = \frac{4\lambda_2 D}{a}$$

$$\frac{5\lambda_1 D}{a} = \frac{4\lambda_2 D}{a}.$$
D'où  $\lambda_2 = \frac{5\lambda_1}{4}.$ 

A.N:

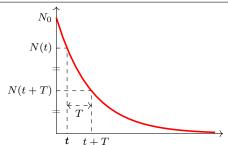
$$\lambda_2 = \frac{5 \times 4, 8.10^{-7}}{4} = 6.10^{-7} \text{ m}.$$



- ➤ Voir le sujet.
- ▶ Retour au sommaire.

#### Partie A : vérification des connaissances

# Appariement


• 1 = c.

La constante d'acidité  $K_a$  d'un couple acido-basique est la constante d'équilibre associée à

l'équation chimique :  $\underbrace{AH}_{acide} + H_2O \Longrightarrow \underbrace{A^-}_{base} + H_3O^+$ Elle est donnée par la relation :  $K_a = \frac{[A^-].[H_3O^+]}{[AH]}$ .

2 = d.

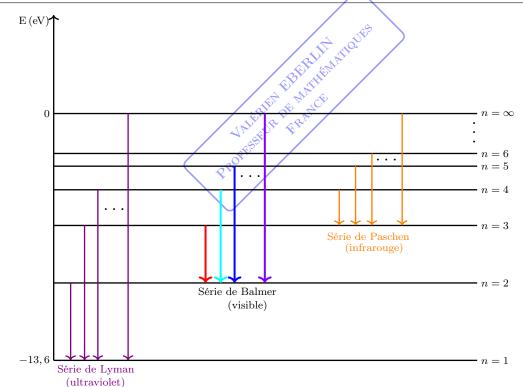
Dans un échantillon de matière radioactive constitué de noyaux radioactifs d'une espèce donnée, le nombre N(t) de noyaux présents à un instant t est donné par la loi de décroissance radioactive :  $N(t) = N_0 e^{-\lambda t}$  où N(t+T) $N_0$  le nombre de noyaux radioactifs à l'instant initial et  $\lambda$  la constante de désintégration radioactive.



La durée nécessaire T à la désintégration de la moitié des noyaux radioactifs est appelé

On a donc  $N(t+T) = \frac{N(t)}{2}$  ou encore  $N_0 e^{-\lambda(t+T)} = \frac{N_0 e^{-\lambda t}}{2}$ . D'où  $T = \frac{\ln 2}{\lambda}$ 

La constante de désintégration radioactive  $\lambda$  est liée à sa demi-vie T par la relation  $\lambda = \frac{\ln 2}{T}$ 


3 = b.

Considérons la réaction suivante :  $\alpha A + \beta B \rightleftharpoons \gamma C + \delta D$  où  $\alpha, \beta, \gamma$  et  $\delta$  sont des nombres stœchiométriques et A, B, C et D des réactifs et produits.

À l'état d'équilibre, les quantités de matière des espèces dissoutes n'évoluent plus.

La constante d'équilibre pour cette réaction s'écrit :  $K = \frac{[C]_{eq}^{\gamma} \cdot [D]_{eq}^{\delta}}{[A]_{eq}^{\alpha} \cdot [B]_{eq}^{\beta}}$ 





Un électron peut absorber un photon (quanta d'énergie) pour passer d'un état inférieur p à un état supérieur n ou émettre un photon pour passer d'un état supérieur n à un état inférieur p.

L'énergie du photon émis est égale à la différence d'énergie  $\Delta E$  entre les deux niveaux impliqués dans la transition :  $\Delta E = -\frac{E_0}{n^2} - \left(-\frac{E_0}{p^2}\right) = E_0 \left(\frac{1}{p^2} - \frac{1}{n^2}\right)$  Or cette énergie  $\Delta E$  peut être reliée à une onde électromagnétique de fréquence  $\nu$ . En

Or cette énergie  $\Delta E$  peut être reliée à une onde électromagnétique de fréquence  $\nu$ . En utilisant la relation de Planck, on a :  $\Delta E = h\nu = \frac{hc}{\lambda}$  où h est la constante de Plank et c la célérité de la lumière dans le vide.

célérité de la lumière dans le vide.  $\frac{hc}{\lambda} = E_0 \left( \frac{1}{p^2} - \frac{1}{n^2} \right). \text{ D'où } \frac{1}{\lambda} = \frac{E_0}{hc} \left( \frac{1}{p^2} - \frac{1}{n^2} \right).$ 

De la formule empirique de Balmer,  $\frac{1}{\lambda} = R_H \left( \frac{1}{p^2} - \frac{1}{n^2} \right)$ , on en déduit que  $R_H = \frac{E_0}{hc}$ .

# 2 Schéma à compléter

 $(C_2H_5)_2NH + H_2O \Longrightarrow (C_2H_5)_2NH_2^+ + OH^-$ 

L'atome de l'azote présente un doublet non liant, ce qui donne aux amines un caractère basique selon la théorie de Brønsted-Lowry.

# Questions à choix multiples reserve

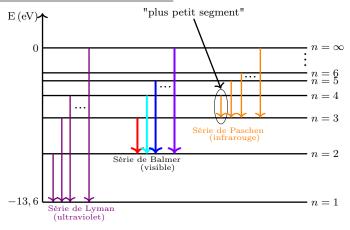
 $3. 1 = a \cdot 3$ 

La réaction d'un acide carboxylique RCOOH avec un alcool ROH conduit à la formation d'ester et d'eau. Cette réaction est appelée estérification.

Pour un mélange équimolaire, le rendement d'estérification d'un alcool dépend de sa classe (primaire, secondaire ou tertiaire). Il vaut :

- soit 5%;
- soit 60%;
- soit 67%.

Or plus la classe de l'alcool est élevée, moins le rendement est grand. On en déduit que le rendement d'un alcool secondaire est de  $60\,\%$ .


#### $3.2 = b \cdot 3$

Soit  $p \in \{1, 2, 3\}$  et  $n \ge p + 1$ .

Pour une transition entre un état de niveau d'énergie  $E_n$  et un autre état de niveau d'énergie inférieur  $E_p$ , la relation donnant la longueur d'onde de la radiation émise par l'atome d'hydrogène est :  $\lambda = \frac{hc}{E_n - E_p}$ . On en déduit que  $\lambda$  est maximal si  $E_n - E_p$  est minimal.

Recherche de la longueur d'onde maximale par lecture graphique

En utilisant le graphique des niveaux d'énergie de l'atome d'hydrogène, la plus petite variation d'énergie ("le plus petit segment") est celle qui correspond au passage de l'état 4 à l'état de 3. Donc  $E_4 - E_3$  est minimale. D'où, la plus grande longueur d'onde émise par l'atome d'hydrogène appartient à la série de Paschen.



Recherche de la longueur d'onde maximale par calcul

$$E_n - E_p = E_0 \left( \frac{1}{p^2} - \frac{1}{n^2} \right)$$
 est minimal  $\iff \frac{1}{n^2}$  est maximal  $\iff n$  est minimal  $\iff n = p + 1$  car  $n \ge p + 1$ 

Les plus petites variations d'énergie sont donc : /

Les plus petites variations d'energie sont donc : 
$$E_2 - E_1 = E_0 \left( 1 - \frac{1}{2^2} \right) \; ; \quad E_3 - E_2 = E_0 \left( \frac{1}{3^2} - \frac{1}{2^2} \right) \; ; \quad E_4 - E_3 = E_0 \left( \frac{1}{4^2} - \frac{1}{3^2} \right) .$$

D'où  $E_4 - E_3$  est minimale.

Par conséquent, la plus grande longueur d'onde émise par l'atome d'hydrogène appartient à la série de Paschen.

# Partie B: application des connaissances

 $1 - \log C_0 = -\log 5.10^{-2} = 1,30.$ 

 $-\log C_0 = -\log 5.10^{-2} = 1,30.$  Comme pH  $> -\log C_0$ , alors l'acide monocloroéthanoïque est un acide faible.

- $2 \text{ CH}_2\text{ClCOOH} + \text{H}_2\text{O} \Longrightarrow \text{CH}_2\text{ClCOO}^- + \text{H}_3\text{O}^+$
- a. L'acide monochloroéthanoïque étant un acide faible, sa dissociation dans l'eau est limitée. Ainsi, l'eau présente en excès, est le siège de la réaction d'autoprotolyse :

$$CH_2CICOOH + H_2O \Longrightarrow CH_2CICOO^- + H_3O^+$$
  
 $H_2O + H_2O \Longrightarrow H_3O^+ + HO^-$ 

#### Inventaire des espèces présentes

Les espèces présentes dans la solution aqueuse sont :

- Les ions :  $H_3O^+$ ;  $OH^-$ ;  $CH_2ClCOO^-$ .
- Les molécules : CH<sub>2</sub>ClCOOH ; H<sub>2</sub>O.

#### Calcul de [H<sub>2</sub>O]

Dans une solution aqueuse diluée, les molécules d'eau sont largement majoritaires par rapport aux autres espèces. On peut donc considérer la concentration de l'eau comme une constante valant:

comme une constante valant : 
$$[\text{H}_2\text{O}] = \frac{n_{\text{eau}}}{V_{\text{eau}}} = \frac{m_{\text{eau}}}{M_{H_2O} \times V_{\text{eau}}} = \frac{\rho_{\text{eau}}}{M_{H_2O}} = \frac{1000}{18} = 55,6 \, \text{mol} \cdot \text{L}^{-1}$$

#### Calcul de $[H_3O^+]$

On a :  $[H_3O^+] = 10^{-pH}$ .

$$A.N: [H_3O^+] = 10^{-2,1} = 7,94.10^{-3}\, mol \cdot L^{-1}$$

# Calcul de [OH<sup>-</sup>]

D'après la formule du produit ionique de l'eau :  $[H_3O^+] \times [OH^-] = K_e$ , on en déduit que  $[OH^-] = \frac{K_e}{[H_3O^+]}$ .

$$\underline{A.N}:[OH^-] = \frac{10^{-14}}{7,94.10^{-3}} = 1,26.10^{-12}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$$

#### Calcul de [CH<sub>2</sub>ClCOO<sup>-</sup>]

D'après la condition d'électroneutralité (toute solution aqueuse est électriquement neutre), on a

$$[H_3O^+] = [CH_2ClCOO^-] + [OH^-]$$

Or  $[OH^-] \ll [H_3O^+]$  car la solution est acide.

On en déduit que  $[H_3O^+] = [CH_2ClCOO^-]$ .

D'où 
$$[CH_2CICOO^-] = 7,94.10^{-3} \text{ mol} \cdot L^{-1}$$

# Calcul de [CH<sub>2</sub>ClCOOH]

D'après le principe de la conservation de la matière.

$$C_A = [CH_2ClCOOH] + [CH_2ClCOQ^-]$$

D'où  $[CH_2ClCOOH] = C_A - [CH_2ClCOO^-]$ .

D'où 
$$[CH_2CICOOH] = C_A - [CH_2CICOO^-]$$
.  
 $\underline{A.N} : [CH_2CICOOH] = 5.10^{-2} - 7,94.10^{-3} + 4.21.10^{-2} \text{ mol} \cdot \text{L}^{-1}$ 

$$pKa = pH - \log \frac{[CH_2CICOO^-]}{[CH_2CICOO^-]}$$

**b.** pKa = pH - 
$$\log \frac{[CH_2CICOO^-]}{[CH_2CICOOH]}$$

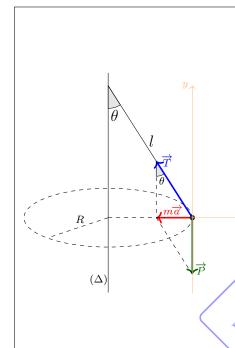
b. pKa = pH - 
$$\log \frac{[\text{CH}_2\text{ClCOO}^-]}{[\text{CH}_2\text{ClCOOH}]}$$
  
 $\underline{\text{A.N.}}: \text{pKa} = 2, 1 - \log \frac{7,94.10^{-3}}{4,21.10^{-2}} = 2,82$ 

4 L'équation bilan de la réaction de dosage est :

$$CH_2CICOOH + OH \longrightarrow CH_2CICOO^- + H_2O$$

Notons  $V_{BE}$  le volume à l'équivalence de la solution titrante NaOH.

- pH=pKa à la demi-équivalence. On a alors,  $V_B = \frac{V_{BE}}{2}$ .
- À l'équivalence,  $n_{\text{CH}_2\text{CICOOH}} = n_{\text{HO}^-}$ .


D'où : 
$$C_A.V_A = C_B.V_{BE}.$$
 On en déduit que  $V_{BE} = \frac{C_A.V_A}{C_B}.$ 

Donc 
$$V_B = \frac{C_A.V_A}{2C_B}$$
.

A.N.: 
$$V_B = \frac{5.10^{-2} \times 20.10^{-3}}{2 \times 0.1} = 5.10^{-3} L = 5 \text{ mL}.$$

# PHYSIQUE points \_

a. Vrai.



Un pendule conique est constitué d'une boule de masse m et d'un fil sans raideur de longueur l et de masse négligeable. Il est en mouvement circulaire uniforme autour d'un axe  $(\Delta)$ .

La vitesse angulaire  $\omega$  étant constante, l'accélération

tangentielle  $\overrightarrow{a_T}$  est nulle. D'où  $a_N = R\omega^2$ . Or  $\sin \theta = \frac{R}{l}$  ou encore  $R = l \sin \theta$ . On en déduit que

D'après le principe fondamental de la dynamique :

$$\overrightarrow{P} + \overrightarrow{T} = m\overrightarrow{a}$$

$$P + T = m \overrightarrow{a}$$

$$D'où \begin{pmatrix} 0 \\ -mg \end{pmatrix} + \begin{pmatrix} -T\sin\theta \\ T\cos\theta \end{pmatrix} = \begin{pmatrix} -ml\omega^2\sin\theta \\ 0 \end{pmatrix}$$
On en déduit que : 
$$\begin{cases} T\sin\theta = ml\omega^2\sin\theta \\ T\cos\theta = mg \end{cases} \tag{2}$$
En divisant, membre, à membre, l'équation (1)

On en déduit que : 
$$\begin{cases} T \sin \theta = ml\omega^2 \sin \theta & (1) \\ T \cos \theta = ma & (2) \end{cases}$$

En divisant membre à membre l'équation (1) par Requation (2), on obtient :

$$\frac{1}{\cos \theta} = \frac{l\omega^2}{g}$$

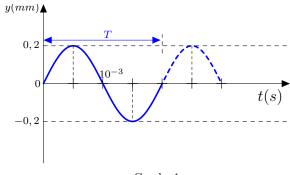
**b.** Vrai

L'effet photoélectrique est l'émission d'électrons par un métal qui reçoit de l'énergie rayonnante.

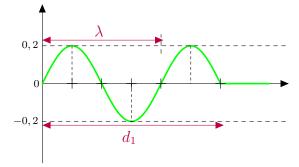
c. Vrai.

Pour un mouvement circulaire uniforme de rayon R et de vitesse angulaire  $\omega$ , l'accélération est normale et vaut  $R\omega^2$  (l'accélération tangentielle étant nulle).

d. Faux


Un circuit RLC en série est dit en résonance lorsque les effets de la réactance inductive  $X_L$ et de la réactance capacitive  $X_C$  s'annulent, c'est-à-dire lorsque :  $X_L = X_C$ . L'impédance du circuit  $Z = \sqrt{R^2 + (X_L - X_C)^2}$  est alors à son minimum et est simplement

égale à la résistance du circuit  $(Z \neq R)$ .


2 Un ébranlement est transversal lorsque la perturbation du milieu élastique est perpendiculaire à la direction de propagation.

# Partie B: application des connaissances

1







Courbe 2

D'après la courbe (1), on en déduit que :  $T = 2.10^{-3}$  s.

D'où 
$$v = \frac{\lambda}{T} = \frac{\lambda}{2.10^{-3}} = 500\lambda \; (\text{m} \cdot \text{s}^{-1}).$$

2 L'équation horaire  $y_O$  de la source O est de la forme :

$$y_O(t) = a_m \sin(\omega t + \varphi)$$

où  $y_O(t)$ ,  $a_m$ ,  $\omega$  et  $\varphi$  sont respectivement l'élongation de la source à la date t, l'amplitude, la pulsation et la phase initiale.

On a:  $\omega = \frac{2\pi}{T} = 1000\pi$ ;  $a = 0, 2 \,\text{mm} = 2.10^{-4} \,\text{m}$ 

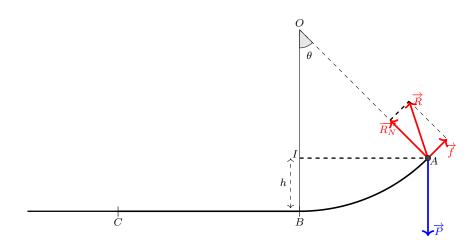
D'où  $y_O(t) = 2.10^{-4} \sin(1000\pi t + \varphi)$ .

Or à  $t=0, y_O=0$ . On en déduit que  $\sin \varphi=0$  et par conséquent  $\varphi=0$ .

Donc l'équation horaire du mouvement de la source est :  $y_O(t) = 2.10^{-4} \sin(1000\pi t)$ .

3 L'équation horaire du mouvement de M est identique à celui du mouvement de O avec un retard de  $t_M = \frac{d}{v} = \frac{12.5}{500\lambda}$ .

D'où  $y_M(t) = y_O(t - t_M) = 2.10^{-4} \sin 1000\pi (t - t_M) = 2.10^{-4} \sin \left(1000\pi t - \frac{25\pi}{\lambda}\right).$ 


4 L'onde se propageant toujours à la même vitesse v, on  $a: \frac{\lambda}{T} = \frac{d_1}{t_1}$  où  $d_1$  est la distance parcourue par l'onde à l'instant  $t_1$  (voir courbe 2...ci-dessus). D'où  $t_1 = \frac{a_1}{\sqrt{T}}$ . Or d'après la courbe 2.,  $\frac{d_1}{\lambda} = \frac{6}{4}$ .

D'où 
$$t_1 = \frac{6}{4}T$$
.

A.N:  $t_1 = 3.10^{-3} \text{ s.}$ 

# Partie C: résolution d'un problème

1 a. Référentiel : terrestre supposé galiléen (TSG) Système : solide de masse m.



#### Théorème de l'énergie cinétique

La variation de l'énergie cinétique du solide entre les positions A et B est égale à la

$$\begin{split} E_{C_B} - E_{C_A} &= W_{\overrightarrow{P}} + W_{\overrightarrow{R}}^{**} \\ \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2 &= mgh - f. \widehat{AB} \\ \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2 &= mg(OB - OI) - f. \widehat{AB} \end{split}$$

La variation de l'énergie cinétique du solide entre les positions 
$$A$$
 et  $B$  est égale à la somme des travaux des forces entre  $A$  et  $B$ .

$$E_{C_B} - E_{C_A} = W_{\overrightarrow{P}} + W_{\overrightarrow{R}}^{**}$$

$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = mgh - f.\widehat{AB}$$

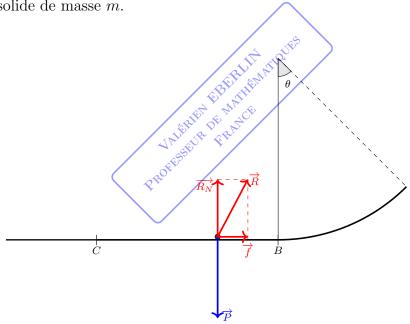
$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = mg(OB - OI) - f.\widehat{AB}$$

$$Or:$$

$$The variation de l'énergie cinétique du solide entre les positions  $A$  et  $B$  est égale à la somme des travaux des forces entre  $A$  et  $B$ .

$$= \int_{\widehat{AB}} \overrightarrow{R} \cdot \overrightarrow{dl}$$

$$= \int_{\widehat{AB}} \overrightarrow{R} \cdot \overrightarrow{dl} = \int_{\widehat{AB}} \overrightarrow{f} \cdot \overrightarrow{dl} =$$$$


- $v_A = 0$  car le solide quitte le point A sans vitesse initiale;
- la longueur de l'arc  $\widehat{AB}$  (que nous notons aussi par  $\widehat{AB}$ ) est donnée par la relation  $\widehat{AB} = r \theta$ ;
- et  $OI = r \cos \theta$

On en déduit que  $\frac{1}{2}mv_B^2 = mgr(1-\cos\theta) - f.r\theta$ .

D'où 
$$v_B = \sqrt{2r \left[g(1-\cos\theta) - \frac{f}{m}\theta\right]}$$
.

**b.** <u>Référentiel</u> : terrestre supposé galiléen (TSG)

Système : solide de masse m.



 $\underline{\text{Bilan des forces}}: \overrightarrow{P}, \overrightarrow{R}.$ 

#### Théorème de l'énergie cinétique

La variation de l'énergie cinétique du solide entre les positions B et C est égale à la somme des travaux des forces entre B et C.

$$E_{C_C} - E_{C_B} = W_{\overrightarrow{P}} + W_{\overrightarrow{R}}$$

La hauteur du solide ne variant pas entre les points B et C, alors  $W_{\overrightarrow{p}} = 0$ .

L'égalité précédente devient :  $\frac{1}{2}mv_C^2 - \frac{1}{2}mv_B^2 = -f.BC = -2f.r$ 

$$v_C^2 = v_B^2 - \frac{4fr}{m} = 2r \left[ g(1 - \cos \theta) - \frac{f}{m} \theta \right] - \frac{4fr}{m}.$$

D'où 
$$v_C = \sqrt{2r \left[g(1-\cos\theta) - \frac{f}{m}(\theta+2)\right]}.$$

**a.** En C, on a  $v_C = 0$ .

On en déduit que  $g(1 - \cos \theta) - \frac{f}{m}(\theta + 2) = 0$ .

D'où 
$$f = \frac{mg(1 - \cos \theta)}{\theta + 2}$$
.

**b.** 
$$f = \frac{60 \times 10 \times (1 - \cos \frac{\pi}{4})}{\frac{\pi}{4} + 2} \approx 63, 1 \text{ N}.$$

c. 
$$v_B \approx \sqrt{2 \times 5 \left[10 \left(1 - \cos \frac{\pi}{4}\right) - \frac{63.1}{60} \times \frac{\pi}{4}\right]} \approx 4,59 \,\mathrm{m} \cdot \mathrm{s}^{-1}$$