Sujet bac 2020 - Série C

_ CHIMIE 8 Points ___

Partie A : vérification des connaissances

1 Question à réponse courte

Soit la réaction chimique équilibrée exothermique suivante :

$$2 SO_{2(q)} + O_{2(q)} \Longrightarrow 2 SO_{3(q)}$$

Dans quel sens l'équilibre se déplace-t-il :

- a. lorsqu'on augmente la température?
- **b.** lorsqu'on augmente la pression?

2 Texte à trous

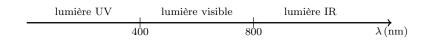
Recopie et complète la phrase ci-après par quatre mots manquants que tu trouveras parmi les six mots suivants : substance, initialement, demi-vie, moitié, échantillon, totalité.

 \ll La \cdots est la durée au bout de la quelle la \cdots des noyaux \cdots présents dans un \cdots a disparu \gg .

3 Appariement

Relie un élément-question de la colonne A à un élément-réponse de la colonne B.

 $\underline{\text{Exemple}} : \mathbf{a_5} = \mathbf{b_7}$

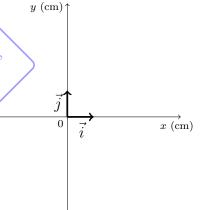

Colonne A	Colonne B
a ₁) monobase forte	b_1) pH = $-\log 2$ C
	EBY THE
a ₂) diacide fort	$b_2) pH = -logC$
	Still R D. R.A.
a ₃) dibase forte	$\mathrm{b_3})~\mathrm{pH} = 14 + \mathrm{log}2\mathrm{C}$
	aorit.
a ₄) mono-acide fort	$b_4)$ pH = $14 + \log C$

Partie B: application des connaissances

Les énergies des différents niveaux de l'atome d'hydrogène, exprimées en électrons-volts, sont données par la formule : $E_n = -\frac{13,6}{n^2}$ où n est un entier naturel non nul.

- **a.** Calcule, en électrons-volt, les énergies correspondant à n=1; n=2; n=3 et $n=\infty$.
 - b. Représente ces quatre niveaux dans un diagramme d'énergie. Echelle : 1 cm pour $1\,\mathrm{eV}\,\cdot$
- a. Calcule l'énergie minimale que l'on doit fournir à un atome d'hydrogène pour qu'il passe de l'état fondamental au premier état excité.
 - b. Représente cette transition à l'aide d'une flèche sur le même diagramme.
 - c. Cette énergie est apportée à l'atome par une radiation lumineuse monochromatique.
 - **c.1.** Calcule sa longueur d'onde.
 - **c.1.** À quel domaine du spectre appartient cette radiation?
- Calcule la longueur d'onde de la radiation susceptible d'ioniser l'atome d'hydrogène.

Données : $c = 3.10^{8} \,\mathrm{m \cdot s^{-1}} \; \; ; \; h = 6,62.10^{-34} \,\mathrm{J \cdot s} \; \; ; \; 1 \,\mathrm{eV} = 1,6.10^{-19} \,\mathrm{J} \; \; ; \; 1 \,\mathrm{nm} = 10^{-9} \,\mathrm{m}.$



_____ PHYSIQUE 12 points _____

Partie A : vérification des connaissances

1 Schéma à compléter

Dans le repère ci-contre, représente les vecteurs de Fresnel $\overrightarrow{OA_1}$ et $\overrightarrow{OA_2}$ associés respectivement aux fonctions sinusoïdales : $y_1=2\sin(100\pi t+\pi)$ (cm) et $y_1=3\sin(100\pi t-\frac{\pi}{2})$ (cm)

2 Question à réponse construite

Dans l'expérience des fentes de Young en lumière monochromatique, qu'observe-t-on sur l'écran dans la zone où se croise les lumières issues des sources S_1 et S_2 ?

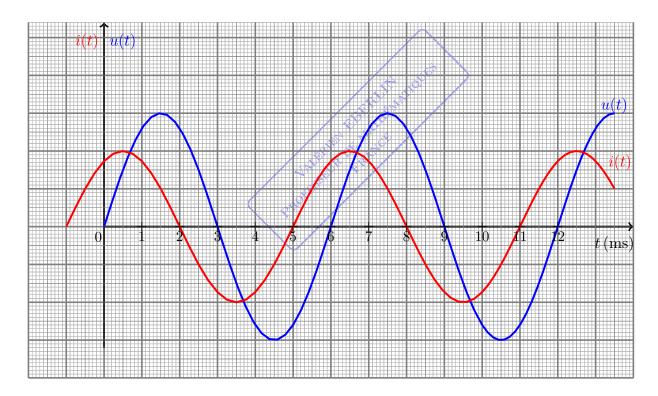
3 Question à choix multiple

a. L'équilibre différentielle d'un pendule pesant dans le cas des oscillations de faible amplitude s'écrit :

a.1.
$$\ddot{\theta} + \frac{mg \, OG}{J_{\Delta}} \, \theta = 0$$
;

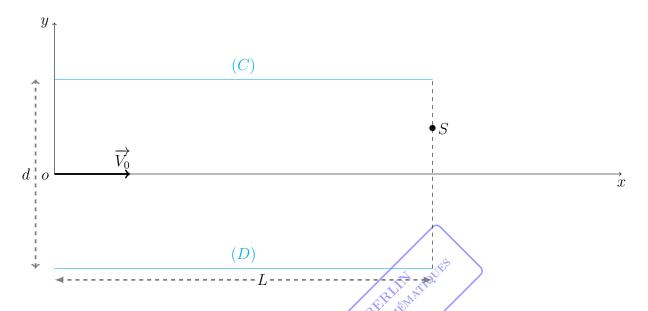
a.2.
$$\ddot{\theta} + \frac{J_{\Delta}}{mg \, OG} \, \theta = 0$$
;

a.3.
$$\ddot{\theta} + \frac{mg \, OG}{J_{\Delta}} \, \dot{\theta} = 0.$$


- **b.** Dans un circuit RLC, série, à la résonance :
 - **b.1.** $L\omega$ et Z sont égaux;
 - **b.2.** l'intensité efficace est maximale;
 - **b.3.** la puissance consommée est minimale.

Partie B: application de connaissance

Un oscilloscope bicourbe permet de visualiser l'intensité dans un circuit RLC et la tension aux bornes du même circuit. On obtient les courbes suivantes : 1 carreau pour 100 V; 1 carreau pour 100 mA; 1 carreau pour 1 ms).


- a. Déduis les valeurs maximales de la tension et de l'intensité.
 - **b.** Calcule l'impédance Z du circuit.
- **2** a. laquelle des deux fonctions i(t) et u(t) est-elle en avance de phase sur l'autre?
 - **b.** Calcule le déphasage entre les deux fonctions.
- 3 On donne $i(t) = I_m \sin \omega t$.

Donne l'expression de la tension u(t) aux bornes du circuit.

Partie C: résolution d'un problème

Une particule α (noyau d'hélium $\overrightarrow{\text{He}}^{2+}$ de charge $q=+2\,\text{e}$) arrive au point O dans un condensateur plan avec une vitesse initiale $\overrightarrow{V_0}$ de direction parallèle aux armatures (C) et (D). Une tension constante U est appliquée entre ces deux armatures longues de $L=5\,\text{cm}$ et distantes de $d=4\,\text{cm}$.

On se propose de déterminer la valeur de la tension U pour que l'ordonnée du point de sortie S soit $Y_S=1,0$ cm.

- 1 Indique la polarité des plaques pour que la particule soit déviée vers le haut.
- Recopie la figure en représentant le champ électrique \overrightarrow{E} et la force électrique \overrightarrow{F} au point O.
- 3 Étabis les équations horaires du mouvement de la particule dans le repère (Oxy).

- 4 Déduis l'équation de la trajectoire de la particule à l'intérieur du condensateur.
- a. Trouve, à partir de l'équation de la trajectoire, l'expression de U en fonction de la On donne : $V_0=5.10^5 \mathrm{m\cdot s^{-1}}$; $\mathrm{e}=1,6.10^{-19}\,\mathrm{C}$; $m=6,64.10^{-27}\,\mathrm{kg}$.