Sujet bac 2020 - Série C

EBERLITAN

Exercice 1

4 points

On se propose de déterminer l'ensemble des couples (x, y) d'entiers relatifs vérifiant l'équation $(E_0): 2x - 7y = 3$.

- **1** Montrer que l'équation (E_0) est équivalente à l'équation $(E_1): 2x \equiv 3$ [7].
- 2 Donner l'ensemble des solutions de l'équation (E_1) .
- 3 En déduire l'ensemble des solutions de l'équation (E_0) .
- 4 On désigne par A l'ensemble des diviseurs positifs de 95.
 - **a.** Déterminer A.
 - **b.** Trouver le couple (x, y) vérifiant le système : $\begin{cases} 2x 7y = 3 \\ xy = 95 \end{cases}$

Exercice 2 8 points

Dans le plan orienté, on considère un carré ABCD de centre O, de sens direct.

On désigne par I, J, K et L les milieux respectifs des segments [AB], [BC], [CD] et [DA]. (\mathscr{C}) est le cercle de diamètre [AJ], de centre O'.

P et Q sont les milieux respectifs des segments [BJ] et [AL].

- 1 Faire une figure avec AB = 6 cm.
- 2 Soit f la symétrie glissée d'axe (OL).
 - a. Déterminer le vecteur \overrightarrow{u} de f, sachant que f(D) = I.
 - **b.** Déterminer f(K).
- 3 Soit (\mathcal{H}) l'hyperbole de rectangle fondamental ABJL et d'axe focal (PQ).
 - a. Déterminer les asymptotes de $(\mathcal{H}).$
 - **b.** Placer les foyers F et F' de (\mathcal{H}) (on notera F le foyer le plus proche de point P).
 - c. Déterminer les sommets de (\mathcal{H}) .
 - **d.** Construire les directrices (\mathcal{D}_1) et (\mathcal{D}_2) de (\mathcal{H}) .
 - e. Construire le point M_0 de (\mathcal{H}) situé sur le segment [FJ] (on justifiera la construction du point M_0).
 - f. Prouver que l'excentricité de (\mathcal{H}) est $e = \sqrt{5}$
 - g. Achever la construction de l'hyperbole (H).
- 4 Le plan est rapporté au repère orthonormé (O', \vec{i}, \vec{j}) avec $\vec{i} = \overrightarrow{O'O}$.
 - a. Montrer que l'équation cartésienne de (\mathcal{H}) dans ce repère est : $x^2 \frac{y^2}{4} = -1$.
 - b. Vérifier l'exactitude du résultat obtenu dans la question 3. f.

Exercice 3

5 points

On considère la fonction numérique f sur $]0; +\infty[$ par $: f(x) = \frac{x^2-1}{4} - 2 \ln x.$

- **1** a. Calculer la dérivée f' de f.
 - **b.** Étudier le sens de variation de f.
 - **c.** Montrer que l'équation f(x) = 0 admet une solution unique $\alpha \in [3, 4]$.
- Soit g la fonction définie sur $]3; +\infty[$ par] $g(x) = \sqrt{1+8 \ln x}$. Erreur dans l'énoncé : il convient de définir g sur $[3; +\infty[$ et non sur $]3; +\infty[$. En effet, la
 - question 2. b., suppose que g(3) existe.

 a. Montrer que les équation f(x) = 0 et g(x) = x sont équivalentes sur l'intervalle
 - $]3; +\infty[$. Remplacer cette question par : montrer que les équations f(x) = 0 et g(x) = x sont équivalentes sur l'intervalle $[3; +\infty[$.
 - **b.** On suppose que : $\forall x \in [3; 4], \quad g(x) \in [3; 4] \text{ et } |g'(x)| \leq \frac{4}{9}.$ Montrer que $\forall x \in [3; 4], \quad |g(x) \alpha| \leq \frac{4}{9}|x \alpha|.$
- **3** On considère la suite numérique (u_n) définie par $u_0 = 3$ et $\forall n \in \mathbb{N}, u_{n+1} = g(u_n)$.
 - a. Montrer que $\forall n \in [3;4], u_n \in [3;4].$

Erreur dans l'énoncé : il s'agit de montrer que $\forall n \in \mathbb{N}, u_n \in [3; 4]$.

- **b.** Montrer que $\forall n \in \mathbb{N}, \ |u_{n+1} \alpha| \leq \frac{4}{9}|u_n \alpha|$.
- c. En déduire que $\forall n \in \mathbb{N}, |u_n \alpha| \leq \left(\frac{4}{9}\right)^n$.
- **d.** Montrer que la suite (u_n) converge vers le réel α .
- e. Déterminer le plus petit entier naturel n_0 tel que u_{n_0} soit une valeur approchée de α à 10^{-2} près.

Exercice 4 3 points

Une classe d'un lycée est constituée de 26 garçons et 14 filles. 13 garçons et n filles de cette classe sont inscrits dans un centre d'apprentissage de langues. On choisit au hasard une personne parmi les élèves de cette classe. On note les événements suivants :

G : « la personne choisie est un garçon »

F: « la personne choisie est une fille »

L : « la personne choisie est inscrite dans un centre d'apprentissage de langues »

- 1 Calculer les probabilités P(G) et P(F).
- Construire un arbre de probabilités correspondant aux données de l'énoncé, sachant que $P_G(L) = \frac{1}{2}$ et $P_F(L) = \frac{n}{14}$.
- **3** Montrer que $P(L) = \frac{13+n}{40}$.
- 4 Déterminer n pour que les événements L et G soient indépendants.