Sujet bac 2019 - Série D

CHIME 8 points

Partie A : vérification des connaissances

1 Texte à trous

Reproduis puis complète la phrase suivante par quatre des cinq mots ci-après : électron ; longueur ; atomes ; particules ; rayonnement.

Lorsque les noyaux de certains · · · · · · se désintègrent, ils émettent d'une part, des · · · · · · d'autre part, un · · · · · · · électromagnétique de très courte · · · · · · d'onde.

2 Question à réponse construite

Donne la définition d'une famille radioactive.

3 Questions à alternative vrai ou faux

Réponds par vrai ou faux aux affirmations suivantes. Exemple : 3. e = vrai.

- **3.a.** Un indicateur coloré est un acide faible ou une base faible dont la couleur de sa forme acide est différente de la couleur de sa forme basique, en solution aqueuse.
- **3.b.** Un atome d'hydrogène dans son état fondamental émet un rayonnement électromagnétique.
- **3.c.** L'élévation ébulliométrie est inversement proportionnelle à la masse molaire moléculaire du soluté.
- **3.d.** Dans les conditions normales de température et de pression, le volume molaire est $V_m = 22, 4 \text{ mol/L}.$
- **3.e.** La constante d'équilibre d'une réaction chimique équilibrée dépend des pressions partielles des réactifs et des produits.

Partie B: application des connaissances

La cinétique de la réaction $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + O_2$ a été étudiée expérimentalement à $400 \,^{\circ}\text{K}$. On a obtenu les résultats suivants :

Expérience	1	2	3	AOFFE !
$[NO_2] \cdot mol \cdot L^{-1}$	0,85	1,10	1,6	$V_0 = (\text{Vitesse})_0.$
$V_0.\text{mol}\cdot L^{-1}\cdot s^{-1}$	0,39	0,65	1,38	

- 1 Déterminer l'ordre global de cette réaction ainsi que la valeur numérique de la constante de vitesse.
- 2 Déduis la loi de vitesse ainsi que la loi intégrée de cette réaction.
- 3 Calcule le temps de demi-réaction en considérant l'expérience 2.
- 4 Au bout de combien de temps, 75 % de [NO₂] se sont transformés pour l'expérience 2?

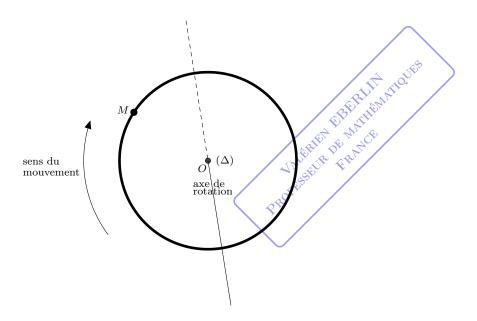
Ph /	
PHYNQUÉ 12 points	

Partie A : vérification des connaissances

1 Appariement

Associe chaque élément-question de la colonne A avec un élément-réponse de la colonne B correspondante. Exemple : $A_7 = B_9$.

Colonne A	Colonne B
A_1 : incertitude relative	B_1 : noeud
A_2 : point d'amplitude	B_2 : nombre abstrait
maximale	
A_3 : point d'amplitude nulle	B ₃ : dépend du temps
A_4 : incertitude absolue	B_4 : nombre concret
	B_5 : ventre


2 Question à réponse courte

Donne le nom de la tension électrique qu'il faut appliquer entre l'anode et la cathode d'une cellule photoélectrique pour annuler le courant photoélectrique.

3 Schéma à compléter

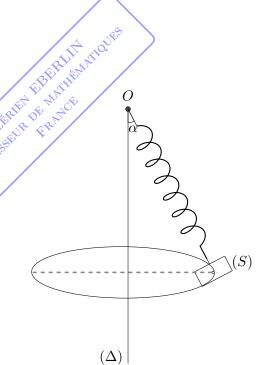
Dans le schéma ci-dessous, le point M est un point de la périphérie d'une roue en rotation. Il effectue un mouvement circulaire uniformément accéléré.

Recopie et complète le schéma en représentant le vecteur accélération \overrightarrow{a} et le vecteur vitesse \overrightarrow{v} du point M.

Partie B: application de connaissances

Un ascenseur démarre en mouvement de translation rectiligne vers le haut. Il atteint la vitesse de $6 \,\mathrm{m\cdot s^{-1}}$ après un parcourt de $6 \,\mathrm{m}$. Il conserve ensuite cette vitesse sur une certaine distance d puis s'arrête 2,5 secondes après un parcourt d'.

- 1 Précise la nature du mouvement de l'ascenseur dans chacune des phases.
- On suspend au plafond de l'ascenseur un ressort à spires non jointives de longueur à vide $l_0 = 20$ cm et de constante de raideur $k = 30 \,\mathrm{N}\cdot\mathrm{m}^{-1}$. À l'autre extrémité de ce ressort est accroché un solide (S) de masse $m = 300 \,\mathrm{g}$. Au cours du mouvement de l'ascenseur, le ressort prend une longueur L. La masse du ressort est négligeable.
 - **a.** Établis l'expression de la longueur L du ressort en fonction de L_0 , m, k, g et de l'accélération a du mouvement.
 - **b.** Calcule la valeur numérique de la longueur L au cours de chaque phase du mouvement.


N.B. : on suppose qu'il ne se produit pas des oscillations. $g=10\,\mathrm{m\cdot s^{-2}}$

Partie C: résolution d'un problème

Le but de ce problème est de déterminer la période T d'un pendule conique.

On dispose d'un ressort vertical à spires non jointives de longueur à vide $L_0=20$ cm. On accroche un solide S de masse $m=200\,\mathrm{g}$ à l'extrémité inférieure du ressort. À l'équilibre, la longueur du ressort est $L_1=30$ cm.

- 1 Détermine la constante de raideur K du
- ce ressort est fixé par son extrémité supérieure en un point O d'un axe vertical pur de l'axe (Δ). L'ensemble est mis en rotation and tour de l'axe (Δ) grâce à monosolide (S) déc 2 Ce ressort est fixé par son extrémité suplan horizontal et la direction du ressort fait un angle $\alpha = 30^{\circ}$ avec l'axe (Δ) .
 - a. Représente toutes les forces qui s'appliquent sur le solide (S).
 - **b.** Calcule:
 - **b.1.** La longueur L_2 du ressort lors de ce mouvement.
 - **b.2.** La vitesse angulaire ω de rotation de l'ensemble.

3 Calcule enfin la période T, de ce pendule conique. On donne : $g = 10 \,\mathrm{m/s^2}$.

