Sujet bac 2018 Série C

On considère le système d'équation (S) défini par (S) (S)

$$(S): \begin{cases} x \equiv 2[36] \\ x \equiv 3[25] \end{cases}$$

- **1** Montrer que le système (S) est équivalent à l'équation (E): 36a 25b = 1 où a et bdésignent des entiers relatifs.
- 2 Vérifier que le couple (-9, -13) est une solution de E.
- Montrer que l'équation (E) est équivalente à l'équation (E'): $36a \equiv 1$ [25].
- 4 Donner l'inverse modulo 25 de 36.
- 5 En déduire les solutions de (E').
- **a.** Déterminer les solutions de l'équation (E).
 - **b.** En déduire les solutions du système (S) telles que 0 < x < 50.

Exercice

8 points

Dans le plan orienté (\mathcal{P}) , on considère un carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi].$

E, F, G et H désignent les milieux respectifs des segments [AB], [BC], [CD], [DA]. (\mathscr{C}_1) est le cercle circonscrit au triangle ABD.

I est le symétrique de O par rapport à G.

- 1 Faire une figure que l'on complétera. On prendra AB = 4 cm et on placera (AB) horizontalement.
- 2 Soit (Γ) l'hyperbole de rectangle fondamental le carré ABCD et d'axe non focal la droite (EG).
 - a. Préciser le foyer J de (Γ) situé sur la demi-droite [OF).
 - **b.** Préciser la directrice (\mathcal{D}) de (Γ) associée au foyer \mathcal{J} .
 - c. Construire le point K de (Γ) situé sur le segment [JB].
 - **d.** Déterminer la demi-droite asymptote de (Γ) située dans la portion du plan délimitée par les demi-droites [OF) et [OG).
 - e. Construire la branche (Γ_0) de (Γ) située dans la portion du plan délimitée par les demi-droites [OF) et [OG).
- 3 Soit S la similitude plane indirecte d'axe la droite (AC) de rapport 2, qui transforme le point F en le point I.

Démontrer que son centre est O.

4 Soit (Γ') l'image de (Γ) par S.

- a. Montrer que (Γ') est une hyperbole équilatère.
- **b.** Trouver l'excentricité de (Γ') .
- **c.** Construire le cercle principal (\mathscr{C}_2) de (Γ') .
- **d.** Démontrer que (Γ) et (Γ') ont les mêmes asymptotes.
- e. Déterminer l'axe focal de (Γ') .
- **f.** Construire l'image J' du foyer J de (Γ)
- **g.** Construire l'image (\mathscr{C}_1) du cercle (\mathscr{C}_1) par S
- **h.** Construire l'image (Γ'_0) de (Γ_0) par S

Exercice 3

5 points

Partie A

Soit g la fonction numérique définie sur $]0, +\infty[$ par $: g(x) = xe^x - 1.$

- 1 Calculer la dérivée g' de g.
- **2** Dresser le tableau de variation de g. On admet que $\lim_{x\to +\infty} g(x) = +\infty$.
- **3** a. Montrer que l'équation g(x) = 0 admet une solution unique α appartenant à l'intervalle $\left[\frac{1}{2}; 1\right]$.
 - **b.** En déduire le signe de g(x) sur $]0; +\infty[$.

Partie B

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = e^x - \ln x.$

On désigne par (\mathscr{C}) sa courbe représentative dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

- 4 Calculer les limites de f en 0^+ et $+\infty$.
- 5 Montrer que la dérivée f' de f est $f'(x) = \frac{g(x)}{x}$.
- **a.** Dresser le tableau de variation de f. On admet que la courbe (\mathscr{C}) admet une branche parabolique de direction (Oy).
 - **b.** Montrer que f admet un minimum $f(\alpha) = \alpha + \frac{1}{\alpha}$.
- **7** Tracer la courbe (\mathscr{C}). On prendra $\alpha = 0, 6$ et $f(\alpha) = 2, 3$.

Exercice 4

3 points

Soit la série statistique à deux caractères (X,Y) donnée par le tableau à double entrée cidessous.

X	Y	JAJAH	DE 2	3
2		ROF 2	0	3
3		1/	3	4

- 1 Déterminer les série marginales de X et Y.
- 2 Déterminer les coordonnées \overline{X} et \overline{Y} du point moyen G du nuage statistique.
- 3 On admet que la variance de X est $\frac{10}{169}$ et celle de Y est 2,59.
 - a. Montrer que la covariance de X et Y est égale à $\frac{29}{169}$.
 - **b.** Montrer que la droite de régression linéaire de Y en X est : $Y = \frac{29}{40}X \frac{1}{20}$.

