Sujet bac 2017 Série D

Partie A : vérification des connaissances

Questions à choix multiples 1

Choisis la bonne réponse parmi les affirmations suivantes. Exemple : $1.5 = a \cdot 5$.

- 1.1. La longueur d'onde d'une raie est donnée par :
 - $\mathbf{a} \cdot \mathbf{1}. \ \lambda = \frac{E_n E_p}{h.c}$
 - $\mathbf{a} \cdot \mathbf{2}. \ \lambda = \frac{h(E_n E_p)}{c}$ $\mathbf{a} \cdot \mathbf{3}. \ \lambda = \frac{h.c}{E_n E_p}$
- 1.2. Le temps de demi-réaction d'une réaction d'ordre 1 est donné par :
 - $\mathbf{b} \cdot \mathbf{1}. \ t = \frac{k}{\ln 2}$
 - $\mathbf{b} \cdot \mathbf{2}. \ t = \frac{1}{k.C_0}$
 - $\mathbf{b} \cdot \mathbf{3}. \ t = \frac{\ln 2}{k}$
- 1.3. Entre deux acides faibles, le plus fort est celui qui a une constante d'acidité :
 - $\mathbf{c} \cdot \mathbf{1}$. plus faible
 - $\mathbf{c} \cdot \mathbf{2}$. plus grande
 - $\mathbf{c} \cdot \mathbf{3}$. nulle
- 1.3. Le rendement d'estérification d'un alcool tertiaire pour un mélange équimolaire est :
 - $\mathbf{d} \cdot \mathbf{1}$. 67 %;
 - $\mathbf{d} \cdot \mathbf{2}$. 5%;
 - $\mathbf{d} \cdot \mathbf{3}$. 60 %.

Appariement

Relie chaque élément-question de la colonne A à un élément-réponse de la colonne B. Exemple : $A_5 = B_7$.

Colonne A	Colonne B
A_1 : Radioactivité α	B_1 : Réaction totale
	atily stor
A_2 : Radioactivité β^+	B ₂ : Excès de nucléons
	TE DANTE
A ₃ : Réaction de saponification	B_3 . Excès de protons
	VAILETTR FRIT
A_4 : Hydrolyse	B_4 : Réaction réversible
	PROT

Partie B: application des connaissances

On prépare un ester à odeur de rhum présent dans les boissons alcoolisées en mélangeant dans un ballon 0,40 mol d'acide méthanoïque (HCOOH) et 1,00 mol d'éthanol (CH₃-CH₂-OH). On ajoute quelques gouttes d'acide sulfurique puis on chauffe à reflux pendant 4 heures. Après refroidissement, on dose l'acide méthanoïque présent dans le ballon par une solution d'hydroxyde de sodium (Na⁺ + OH⁻) de concentration molaire $C_b = 1,6 \, \text{mol} \cdot \text{L}^{-1}$.

- 1 Écris l'équation-bilan de la réaction d'estérification qui a lieu puis nomme l'ester formé.
- 2 Écris l'équation-bilan de la réaction de dosage de l'acide méthanoïque par la base.

Le volume de base versé pour doser tout l'acide méthanoïque restant est $V_b = 30 \text{ mL}$.

- 3 En te servant de la réaction de dosage, détermine (en mol) la quantité d'acide méthanoïque présent à l'équilibre.
- 4 Déduis la composition (en mol) du mélange final.
- 5 Calcule le rendement de la réaction.

Partie A : vérification des connaissances

Réponds par vrai ou faux aux affirmations suivantes. Exemple : f = Vrai.

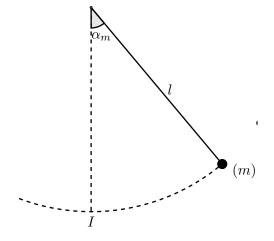
- a. La période de rotation de la terre est T=24 h.
- b. Un ventre de vibration est un point qui vibre avec une amplitude nulle.
- c. La distance parcourue par une onde pendant une période est appelée longueur d'onde.

d. L'allure de la trajectoire du projectile dépend de sa masse.

Texte à trous

HAMATO HS Complète les mots manquants dans la phrase suivante par les mots ci-après : rectiligne, point, galiléen, mouvement, centre, isolé.

Dans le référentiel · · · · · · , le mouvement du · · · · · · · d'inertie d'un solide · · · · · · · est un mouvement · · · · · · · uniforme.

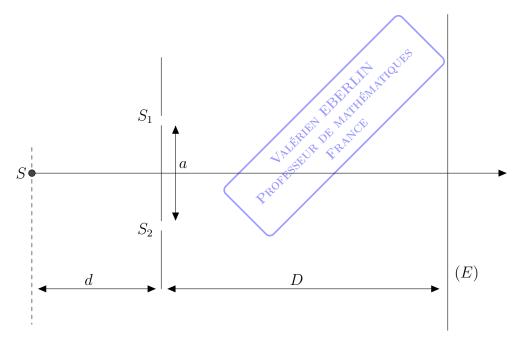

Question à réponse courte 3

Définis l'interfrange.

Partie B: application des connaissances

Un pendule est constitué d'une bille de masse m, assimilable à un solide ponctuel, fixée à une extrémité d'une tige indéformable, sans masse et de longueur l. L'autre extrémité de la tige peut tourner autour d'un axe horizontal (Δ) (Voir figure).

- 1 Fais le bilan des forces exercées sur la bille.
- 2 Calcule le travail des ces forces lorsque le pendule, écarté d'un angle $\alpha_m = 60^{\circ}$ par rapport à la verticale, puis abandonné à lui-même, repasse par sa position d'équilibre.



- **3** Exprime en fonction de m, l, g, et α_m , la vitesse v du pendule au passage à la verticale, la vitesse initiale étant nulle.
- 4 Détermine la tension de la tige au passage par la verticale.

Partie C: résolution d'un problème

On réalise l'expérience des interférences lumineuses avec le dispositif des fentes de Young. La distance entre la source S monochromatique et les plan des fentes S_1 et S_2 est $d=50\,\mathrm{cm}$ et la distance entre les fentes est $a = 3 \,\mathrm{mm}$.

L'écran d'observation (E) est placé à la distance D=2 m du plan des fentes (voir figure).

Au cours de cette expérience, on veut déterminer l'épaisseur e d'une lame de verre d'indice de réfraction n=1,5. Pour cela, on mesure sur l'écran (E) la distance entre la $6^{\text{ème}}$ frange brillante située d'un côté de la frange centrale et la $6^{\text{ème}}$ frange brillante située de l'autre côté de la frange centrale, on trouve $L=4,8\,\text{mm}$.

- 1 Détermine la longueur d'onde λ_1 de la lumière émise par la source S.
- 2 On déplace la source S parallèlement au plan des fentes S_2 du côté de S_1 de $Y=2,5\,\mathrm{cm}$. On constate un déplacement vertical x du système de franges sur l'écran.
 - a. Établis l'expression de la différence de marche δ en fonction de Y, x, D, d et a.
 - b. De combien et dans quel sens se déplace la frange centrale?
- 3 On utilise une lame de verre pour ramener la frange centrale à sa position initiale.
 - a. Devant quelle fente doit-on placer la lame?
 - **b.** Détermine l'épaisseur e de la lame.

