Sujet bac 2017 - Série C

SERLIT ATT

Exercice 1

4 points

On considère l'équation (E) dans $\mathbb{Z} \times \mathbb{Z} : 48x + 35y = 1$.

- Justifier à l'aide du théorème de Bézout que l'équation (E) admet des solutions dans $\mathbb{Z} \times \mathbb{Z}$.
- **b** Justifier que les entiers 48 et -8 sont inverses modulo 35.
- **c** En remarquant que (E) peut s'écrire $48x \equiv 1[35]$, déterminer une solution particulière (x_0, y_0) .
- \mathbf{d} Achever la résolution de l'équation (E).

Exercice 2 8 points

Le plan est orienté. Soit ABC un triangle équilatéral de sens direct, de centre de gravité E.

- 1 Faire une figure. On prendra AB = 4 cm.
- **2** Construire le cercle (\mathscr{C}) de centre A passant par B.
- 3 Construire le point F symétrique de A par rapport à E.
- 4 Montrer que les droites (CF) et (CA) sont perpendiculaires.

Soit (Γ) l'hyperbole de cercle principal (\mathscr{C}) et dont une directrice est la droite (BC).

- **5** Montrer que F est un foyer de (Γ) . Préciser son axe focal.
- 6 On désigne par G le projeté orthogonal de F sur la droite (BC), et H le point de l'axe focal tel que $\overrightarrow{AH} = 3 \overrightarrow{AG}$.
 - **a.** Construire H.
 - **b.** On pose AF = c et AB = a. Que représente le rapport $\frac{AF}{AB}$ pour (Γ)? Montrer que ce rapport est égal à $\frac{2\sqrt{3}}{3}$.
- **7** Construire le point I du plan tel que $\overrightarrow{GI} = \frac{c}{a} \overrightarrow{GH}$.
- 8 Soit (d) la perpendiculaire à l'axe focal passant par H. Construire le point J de (Γ) situé sur (d) et situé dans le demi plan délimité par la droite (AH) contenant le point C.
- 9 On note S le sommet de (Γ) associé au foyer F. Construire l'arc (\mathcal{H}) de (Γ) d'extrémités J et S.
- On désigne par s la similitude plane indirecte définie par : $s = h \circ S_{(BC)}$ où h est l'homothétie de centre A et de rapport $\frac{1}{2}$ et $S_{(BC)}$ la symétrie orthogonale d'axe (BC).
 - **a.** Déterminer l'axe (Δ) et le centre (Ω) de s.

- **b.** Construire l'arc (\mathcal{H}') , image de (\mathcal{H}) par s.
- c. Déterminer l'excentricité de (Γ') image de (Γ) par s.

Exercice 3

5 points

Soit f la fonction numérique définie sur l'intervalle $I = [0; +\infty[$ par $: f(x) = (x-1)\ln(x+1)$. On pose pour tout $x \ge 0$, $F(x) = \int_{1}^{x} f(t)dt$

- **a.** Prouver que F est dérivable sur T et que pour tout $x \in I$; F'(x) = f(x).
 - **b.** En déduire le sens de variation de F sur I.
- 2 On admet que pour tout $x \ge 2$, on a $f(x) \ge x 1$.
 - **a.** Prouver que pour tout $x \ge 2$, $F(x) \ge \frac{1}{2}(x-1)^2$.

<u>Erreur dans l'énoncé</u> : L'inégalité $F(x) \ge \frac{1}{2}(x-1)^2$ pour tout $x \ge 2$ est fausse. Substituer cette question par

Prouver que pour tout $x \ge 2$, $F(x) \ge F(2) + \frac{x^2}{2} - x$.

- **b.** En déduire $\lim_{x \to +\infty} F(x)$ et $\lim_{x \to +\infty} \frac{F(x)}{x}$.
- **c.** Dresser le tableau de variation de F.
- d. Donner l'allure de la courbe (\mathscr{C}) représentant la fonction F dans un repère orthonormal (O, \vec{i}, \vec{j}) d'unité graphique 2 cm. On donne F(0) = 0, 13; F(2) = 0, 5.
- 3 Soit la suite numérique (u_n) définie pour tout entier naturel n par : $u_n = \int_{r_n}^{n+1} f(t)dt$.
 - **a.** Vérifier que $u_n = F(n+1) F(n)$.
 - **b.** En utilisant le théorème des inégalités des accroissements finis sur l'intervalle [n; n+1], montrer que pour tout $n \in \mathbb{N}$, on a $f(n) \leq u_n \leq f(n+1)$.

<u>Erreur dans l'énoncé</u>: l'encadrement $f(n) \leq u_n \leq f(n+1)$ n'est pas vérifié pour tout $n \in \mathbb{N}$ mais pour tout $n \in \mathbb{N}^*$.

Exercice 3 points

Jean s'amuse régulièrement sur un terrain de football avec le gardien de but. L'épreuve consiste à tirer au but et à observer le résultat obtenu. On admet que ;

- la probabilité que Jean réussisse le premier tir au but est de 0,7;
- s'il réussit le premier tir, alors la probabilité de réussir le second est de 0,8;
- s'il manque le premier tir, la probabilité de réussir le second est de 0,4.

On note R_1 l'événement « premier tir au but est réussi » et R_2 l'événement « le second tir au but est réussi».

- 1 Construire l'arbre de probabilité correspondant à cette expérience.
- 2 Calculer la probabilité pour que les deux tirs au but soient réussis.
- 3 Calculer la probabilité pour que le second tir au but soit réussi.
- 4 On note A, l'événement « Jean a réussi exactement un tir au but ». Calculer P(A).