Sujet bac 2016 - Série D

CHIMIE REPORTS

Partie A : vérification des connaissances

1 Texte à trous

Complète la phrase ci-après par les mots suivants : neutrons, l'atome, nucléons, protons. Le noyau · · · · · · · est constitué des · · · · · · · et des · · · · · · · appelés · · · · · · ·

2 Appariement

Relie un élément-question de la colonne A à un élément-réponse de la colonne B. $\underline{\text{Exemple}}$: $A_7 = b_8$.

Colonne A	Colonne B
a_1 : solution basique	\mathbf{b}_1 : contient plus d'ions hydronium que d'ions hydroxyde
a_2 : solution acide	b_2 : isotopes
${\tt a}_3$: le produit ionique de l'eau	b_3 : contient plus d'ions hydroxyde que d'ions hydronium
\mathbf{a}_4 : nucléides de même Z mais de A différents	b ₄ : aqueuse diluée

3 Questions à réponse construite

La radioactivité γ accompagne généralement les radioactivités α et β . Explique l'émission du rayonnement γ .

Partie B: application des connaissances

On a préparé une solution d'acide méthanoïque (HCOOH) de concentration inconnue C_0 . Le pH de cette solution est égal à 2,7.

1 Écris l'équation-bilan de la réaction de l'acide méthanoïque avec de l'eau.

- 2 Fais l'inventaire de toutes les espèces chimiques présentes dans la solution.
- 3 Sachant que le pka du couple acide-base associé à l'acide méthanoïque est 3,8, calcule les concentrations molaires de toutes les espèces chimiques.
- 4 Déduis la concentration molaire C_0 de la solution d'acide méthanoïque. On donne $K_e = 10^{-14}$.

PHYSIQUE 12 points _

Partie A : vérification des connaissances

Question à réponse courte

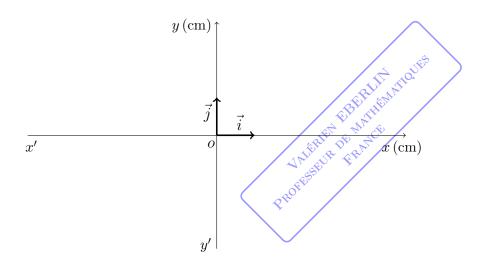
Définis une onde transversale.

Réarrangement |2|

Ordonne la phrase suivante qui est écrite en désordre.

Un oscillateur / est une fonction sinusoïdale du temps / est / dont / un oscillateur / harmonique / l'équation horaire du mouvement /.

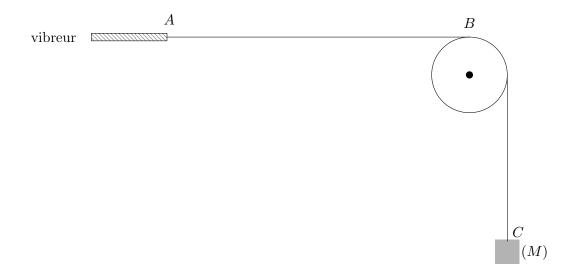
Questions à alternative Vrai ou Faux 3


Réponds par vrai ou faux aux affirmations suivantes:

- a. Pour des oscillations de faible amplitude, un pendule pesant est un oscillateur harmonique de translation.
- b. La longueur d'onde est la distance parcourue par une onde en une période.

Schéma à compléter

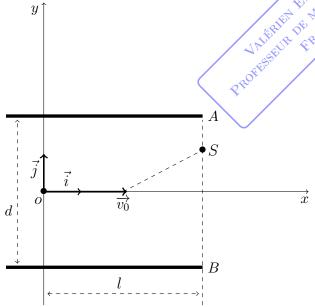
Dans le repère ci-dessous, représente les vecteurs de Fresnel $\overrightarrow{OA_1}$ et $\overrightarrow{OA_2}$ associés respectively. tivement aux fonctions sinusoïdales:


$$y_1 = 2\sin\left(100\pi t + \frac{\pi}{2}\right)$$
 (cm) et $y_2 = 3\sin(50\pi t + \pi)$ (cm)

Partie B: application des connaissances

Une corde de longueur $L=1,2\,\mathrm{cm}$ et de masse $m=40\,\mathrm{g}$ soutient à son extrémité C un solide de masse M. La partie horizontale de longueur $l = AB = 0,9 \,\mathrm{m}$, est la siège d'un phénomène d'ondes stationnaires.

Un vibreur impose à l'extrémité A un mouvement sinusoïdal transversal de fréquence N= $50\,\mathrm{Hz}.$ L'extrémité C de la corde porte un solide de masse M.



- PROFESSEUR PED ARTICLE ARTICLES 1 On observe 6 fuseaux sur la partie AB de la corde. Calcule:
 - a. La longueur d'onde de la vibration.
 - **b.** La célérité de propagation.
- 2 Détermine la valeur de la masse M. On donne $q = 10 \text{ m/s}^2$.

Partie C: résolution d'un problème

On se propose de déterminer la vitesse d'un électron à la sortie des plaques d'un condensateur où règne un champ électrostatique uniforme \overrightarrow{E} .

Pour cela, on considère un faisceau homocinétique d'électrons qui pénètre au point O avec une vitesse initiale $V_0=10^7\,\mathrm{m/s}$, dans le champ électrostatique uniforme \overrightarrow{E} compris entre deux plaques métalliques parallèles et horizontales A et B distantes de $d=15\,\mathrm{cm}$.

- On établis entre ces plaques, de longueur $l=20\,\mathrm{cm}$, une différence de potentiel $V_A-V_B=U_{AB}=+150\,\mathrm{V}$.
 - a. Donne le signe des plaques A et B puis représente le vecteur champ \overrightarrow{E} entre les plaques.
 - b. Calcule l'intensité du vecteur champ \overrightarrow{E} .
- **2** a. Établis les équations horaires du mouvement de l'électron dans le repère (O, \vec{i}, \vec{j}) .
 - **b.** Détermine l'équation cartésienne de la trajectoire.
- 3 Trouve les composantes du vecteur vitesse $\overrightarrow{v_S}$ à la sortie S du champ.
- 4 Déduis alors la norme du vecteur vitesse $\overrightarrow{v_S}$.

Données : $q = e = -1, 6.10^{-19} \text{ C}$; $m = 9, 1.10^{-31} \text{ kg}$.

