Sujet bac 2016 - Série C

BERLIE MATIC

Exercice 1

4 points

On donne dans \mathbb{Z} l'équation :

$$(E) : 2688x + 3024y = -3360$$

- Déterminer le PGCD (2688, 3024), puis en déduire que l'équation (E) admet des solutions dans \mathbb{Z}^2 .
- Montrer que l'équation (E) est équivalente à l'équation (E_1) : 8x + 9y = -10.
- **a** Montrer que l'équation (E_1) peut s'écrire (E_2) : $8x \equiv -10$ [9].
 - **b** Résoudre l'équation (E_2) .
 - \mathbf{c} En déduire les solutions de l'équation (E).

Exercice 2

8 points

Le plan est orienté.

 \overrightarrow{ABCD} est un rectangle tel que $(\overrightarrow{BD}, \overrightarrow{BA}) = \frac{\pi}{3}, [2\pi]$. On considère le losange \overrightarrow{BDEG} tel que $(\overrightarrow{BD}, \overrightarrow{BA}) = (\overrightarrow{BD}, \overrightarrow{BE}), (2\pi)$.

Dans cet exercice, S_{Δ} et $t_{\overrightarrow{u}}$ désignent respectivement la symétrie orthogonale d'axe la droite (Δ) et la translation de vecteur \overrightarrow{u} .

On considère la transformation

$$f = S_{(AD)} \circ S_{(AB)} \circ S_{(BD)}$$

- **1** Faire la figure. On prendra AB = 4 cm et on disposera (AB) horizontalement.
- Déterminer la nature et les éléments caractéristiques de la transformation $g = S_{(AB)} \circ S_{(BD)}$.
- 3 R désigne la rotation de centre B et d'angle de mesure $\frac{\pi}{3}$. Déterminer la nature exacte de la transformation $S_{(AD)} \circ R$.
- 4 On désigne par F le milieu du segment [BG].
 - a. Démontrer que $f = t_{\overrightarrow{BF}} \circ S_{(AC)}$.

 Erreur dans l'énoncé : il s'agit plutôt de montrer $S_{(AD)} \circ R = t_{\overrightarrow{BF}} \circ S_{(AC)}$. En effet, la transformation f n'est pas égale à $t_{\overrightarrow{BF}} \circ S_{(AC)}$.
 - b. En déduire les éléments caractéristiques de f. Substituer cette question par : Déduire les éléments caractéristiques de $S_{(AD)} \circ R$.
- Soit (\mathscr{P}) la parabole dont une tangente est la droite (EF), la normale associée est la droite (GB) et l'axe focal est la droite (EB).

 Démontrer que A est le foyer de la parabole (\mathscr{P}) .

- 6 Soit H le milieu du segment [EG] et L celui du segment [ED]. Déterminer la directrice (d) de la parabole (\mathcal{P}) .
- 7 Construire le point I de (\mathcal{P}) tel que [IF] soit une corde focale.
- 8 Construire la corde focale [JK] de (\mathcal{P}) où J appartient au segment [AD].
- 9 Construire l'arc d'extrémités J et F de (\mathcal{P}) .
- 10 Soit (\mathcal{P}') l'image de (\mathcal{P}) par la transformation f
 - a. Déterminer le foyer de la parabole (29).
 - **b.** Déterminer l'axe focal de (**%**').

Exercice 3

5 points

1 Déterminer la solution particulière f de l'équation différentielle :

$$(E) : y'' + 2y' + 2y = 0$$

vérifiant les conditions initiales suivantes : $f(\frac{\pi}{2}) = e^{-\frac{\pi}{2}}$ et $f'(\frac{\pi}{2}) = -e^{-\frac{\pi}{2}}$.

- 2 On pose $f(x) = e^{-x} \sin x$
 - **a.** Déterminer les réels A et B pour que $F(x) = e^{-x}(A\cos x + B\sin x)$ soit une primitive de f sur \mathbb{R} .
 - **b.** Calculer l'intégrale $\int_{n\pi}^{(n+1)\pi} f(x)dx$.
- 3 Soit (v_n) la suite numérique définie pour tout entier naturel n par :

$$v_n = \frac{e^{-\pi} + 1}{2} (-e^{-\pi})^n ; \quad n \in \mathbb{N}$$

- a. Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme.
- **b.** Calculer la somme des termes $S_n = v_0 + v_1 + \cdots + v_n$ en fonction de n, puis en déduire la limite de S_n en $+\infty$.

Exercice 4

3 points

Soit le tableau statistique à double entrée suivant :

X Y	-1	2	3
1	2	1	1 OUTES
2	2	3 Still	MAI 1

- 1 Convertir ce tableau en un tableau linéaire.
- 2 Déterminer le coefficient de corrélation $\rho_{X,Y}$ des caractères X et Y.

On donne $\overline{X} = 1, 6$ et $\overline{Y} = 1$.

3 Donner une interprétation géométrique de cette corrélation.