Sujet bac 2015 - Série D

CHIMIE RADON S

Partie A : vérification des connaissances

1 Questions à choix multiples

Choisis la bonne réponse.

- a. Le pH d'une solution aqueuse d'une monobase forte de concentration molaire C est :
 - a_1) $14 \log C$
 - $\mathbf{a_2}$) $-\log C$
 - **a₃**) $14 + \log C$
- **b.** Un oxydant est une espèce chimique capable :
 - **b**₁) de céder des électrons.
 - **b**₂) de capter des électrons.
- c. Lorsqu'on dilue une solution acide :
 - **c**₁) le pH diminue;
 - c₂) le pH augmente;
 - c₃) le pH ne varie pas.

2 Question à alterne vrai ou faux

Réponds par vrai ou faux.

- a. Le catalyseur permet de réduire la durée d'une réaction.
- **b.** Le temps de demi-réaction d'une réaction d'ordre 2 est $\frac{\ln 2}{K}$.
- c. L'hydrolyse d'un ester est une réaction limitée.

3 Réarrangement

La phrase suivante a été écrite en désordre : ordonne-la.

 $L'activit\'e \ / \ par \ seconde \ / \ radioactive \ / \ est \ le \ nombre \ / \ d'une \ source \ / \ de \ d\'esint\'egration$

Partie B: application des connaissances

La réaction de la décomposition de l'azométhane CH₃N₂CH₃ suivant l'équation :

$$CH_3N_2CH_{3(g)} \longrightarrow CH_3CH_{3(g)} + N_{2(g)}$$

est une réaction d'ordre un.

Sachant que la constante de vitesse est $K=4.10^{-4}$. Sachant que la concentration initiale est $C_0=0,604\,\mathrm{mol.L^1}$:

1 Écris la loi de vitesse de cette réaction.

2 Calcule.

a. Le temps de demi-réaction.

- - b. Le temps nécessaire à la disparition de 75% de la concentration initiale du réactif.
- a. Détermine la concentration de l'azométane à l'instant t=10 min.
 - **b.** Déduis la vitesse de la réaction à cet instant.

Partie A : vérification des connaissances

Texte à trous

Complète la phrase par les mots suivants : tangent; trajectoire; uniforme; normal.

Dans un mouvement circulaire · · · · · · · , le vecteur accélération est · · · · · · · · tandis que $le\ vecteur\ vitesse\ est\ \cdots \qquad \grave{a}\ la\ \cdots \qquad \qquad$

Appariement

Relie l'élément-question de la colonne A à l'élément-réponse de la colonne B qui lui correspond. Exemple : $a_5 = b_7$.

Colonne A	Colonne B
${\bf a}_1$: impédance du circuit R,L	$b_1: Z = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$
\mathbf{a}_2 : différence de marche d'un point d'amplitude nulle	$\mathbf{b}_2: Z = \sqrt{R^2 + (L\omega)^2}$
${\bf a}_3$: impédance du circuit R,L,C en série	$\mathbf{b}_3: d_2 - d_1 = k\lambda$
${\bf a}_4$: différence de marche d'un point d'amplitude maximale	$\mathbf{b}_4: d_2 - d_1 = (2k+1)\frac{\lambda}{2}$

3 Questions à choix multiples

Choisis la bonne réponse. Exemple : $f = f \cdot 3$.

- a. Dans un mouvement circulaire uniformément varié, l'accélération angulaire est :
 - a₁) nulle
 - a₂) constante
 - a₃) variable
- b. Le mouvement d'un satellite autour de la terre est étudié dans un référentiel :
 - b₁) terrestre supposé galiléen
 - **b2**) géocentrique supposé galiléen
 - b₃) lié au centre du soleil
- ${\bf c.}\,$ La célérité V des ondes qui se propagent sur une corde de masse linéique, tenue grâce à une force d'intensité F est :

$$\mathbf{c_1)} \ V = \sqrt{\frac{\mu}{F}}$$

$$\mathbf{c_2}$$
) $V = \sqrt{F.\mu}$

$$\mathbf{c_3)} \quad V = \sqrt{\frac{F}{\mu}}$$

d. L'énergie cinétique d'un système animé d'un mouvement de rotation est donnée par l'expression :

d₁)
$$\frac{1}{2}m.V^2$$

$$\mathbf{d_2)} \ \frac{1}{2} J. \dot{\theta}^2$$

$$\mathbf{d_3}) \ \frac{1}{2} \frac{J}{\dot{\theta^2}}$$

Partie B: application des connaissances

Un camion de masse totale M=2,4 tonnes grimpe une côte rectiligne AB, incliné d'un angle $\alpha=30^\circ$ par rapport à l'horizontale. Partant du repos de A, il accélère uniformément tel qu'il atteint la vitesse de 18 km/h en 10 secondes.

Les forces de frottement sur ce trajet sont équivalentes à une force unique \overrightarrow{f} parallèle à ligne de plus grande pente dont l'intensité est : f=400 N.

Calcule:

- a. L'accélération du mouvement du véhicule.
- **b.** L'intensité F de la force motrice exercée par le moteur du camion.
- c. La vitesse du véhicule au sommet B de la côte sachant que $AB=196\,\mathrm{m}.$
- d. L'énergie mécanique E_m du système (camion-Terre) au sommet B de la côte. On prendra pour niveau de référence de l'énergie potentielle, le plan horizontal passant par A.

Partie C: résolution d'un problème

On désire connaître la longueur d'onde λ d'une radiation lumineuse en exploitant les résultats d'une expérience portant sur l'effet photoélectrique.

On dispose d'une cellule photoélectrique dont la cathode photo-émissive est caractérisée par un seuil photoélectrique correspondant à la longueur d'onde $\lambda_0=0,684.10^{-6}\,\mathrm{m}$. On l'éclaire par la radiation de longueur d'onde $\lambda<\lambda_0$. On constate que, pour une différence de potentiel entre l'anode et la cathode égale à 45 V, les électrons émis arrivent sur l'anode avec une vitesse $v_A=4.10^6\,\mathrm{m/s}$.

- 1 Détermine :
 - a. L'énergie d'extraction W_0 d'un èlectron de la cathode.
 - **b.** L'énergie cinétique d'un électron arrivant sur l'anode.
 - c. L'énergie cinétique maximale d'un électron émis à la cathode.
- 2 Calcule l'énergie W d'un photon incident.
- 3 Déduis-en la valeur de la longueur d'onde de cette relation.

Données : $m_{\rm e} = 9, 1.10^{-31} \, {\rm kg} \; \; ; \; \; c = 3.10^8 \, {\rm m/s} \; \; ; \; \; h = 6, 62.10^{-34} \, {\rm J.s} \; \; ; \; \; e = 1, 6.10^{-19} \, {\rm C.}$

