Sujet bac 2015 - Série C

CHIME 8 points

Partie A : vérification des connaissances

1 Texte à trous

Complète la phrase ci-après par les mots : inférieur, atome, énergie, niveau.

Lorsque l'électron de l' \cdots d'hydrogène passe d'un \cdots supérieur à un niveau \cdots , l'atome émet de l' \cdots

2 Appariement

Relie chaque élément-question de la colonne A à un élément-réponse de la colonne B. Exemple : $A_3=B_3$

.

Colonne A	Colonne B
A1) $^{201}_{84}$ Po \longrightarrow $^{206}_{82}$ Pb $+$ $^{4}_{2}$ He	B1) $2 \text{ Al} + 6 \text{ H}_3 \text{O}^+ \longrightarrow 2 \text{ Al}^{3+} + \text{H}_2^+$
A2) Réaction acido-basique	B1) $NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$
A3) Oxydation du métal zinc	B3) $\operatorname{Zn} \longrightarrow \operatorname{Zn}^{2+} + 2 \operatorname{e}^{-}$
A4) Réaction d'oxydo-réduction	B4) Réaction nucléaire spontanée
A5) $^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He$	B5) Pb est le noyau fils

3 Questions à choix multiples

- a. Une solution aqueuse dont le pH est voisin du pK_A est une :
 - a1. solution réductrice;
 - **a2.** solution tampon;

- **a3.** solution neutre.
- b. Lorsque l'atome d'hydrogène est à son niveau d'énergie le plus bas, l'atome est :
 - **b1.** à l'état fondamental;
 - **b2.** à l'état excité;
 - **b3.** à l'état ionisé.
- c. La radio activité β^- correspond à l'émission S
 - **c1.** de protons;
 - c2. de noyaux d'hélium;
 - c3. d'électrons.
- d. Une solution aqueuse d'acide chlorhydrique est obtenue par dissolution dans l'eau pure :
 - **d1.** du dichlore gazeux;
 - d2. de gaz chlorure d'hydrogène;
 - d3. du chlorure d'aluminium solide.

Partie B: application des connaissances (solutions aqueuse)

Une solution d'éthanamine $(C_2H_5NH_2)$ de concentration molaire volumique $C_0=0.1 \text{ mol/L}$ a un pH = 11,8.

- 1 Vérifie si l'éthanamine est une base forte ou une base faible.
- 2 Écris l'équation de la réaction de l'éthanamine avec de l'eau.
- 3 a. Recense les espèces chimiques présentes dans la solution.
 - **b.** Détermine leurs concentrations molaires volumiques.
- 4 Sachant que le couple ion éthanamonium/éthanamine est $C_2H_5NH_3^+$ / $C_2H_5NH_2$, calcule le pKa de ce couple acide/base.

Partie A : vérification des connaissances

1 Réarrangement

La phrase suivante est écrite en désordre. Ordonne-là.

la trajectoire / géostationnaire / d'un satellite / dans le plan équatorial / est toujours / de la terre.

Questions à alternative vrai ou faux

- b. La loi d'ohm en courant alternatif s'écrit : U = RI. c. Pour une corde qui est le siège d'ondes stationnaires, l'élongation à l'instant t d'un point vibrant est : $y = 2a \sin\left(\frac{2\pi x}{\lambda}\right) \cos\left(\frac{2\pi t}{T}\right)$
- d. L'équation différentielle du mouvement d'un pendule de torsion est $\ddot{\theta} + \frac{C}{I}\theta = 0$.

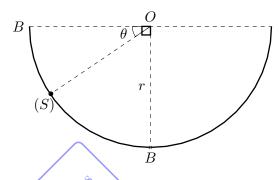
Partie B: application des connaissances

On dispose d'une fourche munie de deux pointes S_1 et S_2 qui frappent la surface libre d'un liquide au repos. La fourche est liée à un vibreur qui impose deux vibrations sinusoïdales à S_1 et S_2 en phase, de même amplitude $a = 2.10^{-3}$ m et de même fréquence N = 100 Hz.

Soit $y_{S_1}(t) = y_{S_2}(t) = a \sin \omega t$, les équations du mouvement des deux sources.

- **1** Établis l'équation du mouvement résultant d'un point M situé à une distance d_1 de S_1 et d_2 de S_2 .
- 2 Calcule le nombre de points d'amplitude maximale qui se forment sur le segment S_1S_2 .
- **3** Détermine l'état vibratoire d'un point P situé à $d_1 = 3, 15$ cm de S_1 et $d_2 = 4, 35$ cm de S_2 .

On donne:

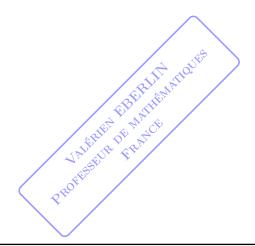

- célérité des ondes à la surface du liquide v = 0, 6 m/s;
- $S_1S_2 = 3$ cm.

Partie C: résolution d'un problème

Afin d'évaluer l'impact de la force de frottement sur la vitesse d'un solide, on réalise deux études comparatives en utilisant le dispositif ci-après.

Le solide (S), assimilable à un point matériel de masse $m = 10 \,\mathrm{g}$, glisse à l'intérieur de la demisphère de centre O et de rayon $r = 1, 25 \,\mathrm{m}$.

On le lâche du point A sans vitesse initiale. Sa position à l'intérieur de la demi-sphère est repérée par θ (figure ci-contre).



- 1 On admet que le solide (S) glisse sans frottement.
 - a. Exprime sa vitesse au point M en fonction de g, r et de θ . Calcule sa valeur numérique v_B au point $B'(g=10 \text{ m s}^{-2})$.
 - b. Exprime l'intensité de la réaction R exercée par la demi-sphère sur le solide en fonction de g, r et de θ .
 - c. Calcul R en B.
- En réalité, le solide est soumis à une force de frottement \overrightarrow{f} de même direction et de sens opposé au vecteur vitesse \overrightarrow{v} du solide. L'intensité de \overrightarrow{f} est égale à 1,21.10⁻² N.

a. Calcule la vitesse v'_B au point B.

b. Compare v_B et v'_B puis conclus.

