Sujet bac 2015 - Série C

BERIEMA

Exercice 1 4 points

Le but de l'exercice est de résoudre l'équation (E): 21x - 17y = 4

- a. Montrer que cette équation admet au moins une solution.
 - **b.** Montrer que l'équation (E) est équivalente à l'équation (E') : $21x \equiv 4[17]$.
- On se propose de résoudre l'équation (E'). On rappelle qu'un entier relatif a est l'inverse modulo n $(n \in \mathbb{N})$ d'un entier relatif b si $ab \equiv 1[n]$.
 - a. Déterminer l'inverse modulo 17 de 21.
 - **b.** Montrer que les solutions de l'équation (E') sont les entiers relatifs x tels que x=1+17k; $k\in\mathbb{Z}$.
- **3** En déduire l'ensemble des solutions de (E).

Exercice 2 8 points

Dans le plan orienté, on considère le carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$. Soit I et J les milieux respectifs des segments [DC] et [AD]. On prendra AB = 4 cm.

- 1 Faire une figure.
- 2 On considère l'ellipse (\mathscr{E}) de centre Ω , d'excentricité $\frac{1}{2}$ dont un foyer est B et une directrice (AD). Quel est l'axe focal de (\mathscr{E}) ?
- 3 Soit S_1 et S_2 les points de (\mathscr{E}) situés sur la droite (AB).
 - a. Montrer que $\overrightarrow{BS_1} = \frac{1}{3}\overrightarrow{BA}$ et $\overrightarrow{BS_2} = -\overrightarrow{BA}$
 - **b.** Placer S_1 et S_2 .
- 4 Tracer le cercle principal (\mathscr{C}_p) de (\mathscr{E}) .
- 5 Tracer le cercle secondaire (\mathscr{C}_s) de (\mathscr{E}) .
- Tracer le cercle directeur (\mathscr{C}_d) de (\mathscr{E}) ayant pour centre le foyer B.
- 7 Construire le point de (&) situé sur la demi-droite [BC).
- 8 Tracer l'arc de (\mathscr{E}) balayé par l'angle $(\overrightarrow{\Omega S_3}, \overrightarrow{\Omega B})$ où S_3 est un sommet de (\mathscr{E}) situé sur l'axe non focal et du même côté que C.
- 9 Soit f la transformation plane définie par : $f = S_{(AC)} \circ t_{\overrightarrow{DC}}$.
 - a. Qu'appelle-t-on symétrie glissée?
 - b. Montrer que f est une symétrie glissée. Déterminer son vecteur et son axe.
 - c. Tracer (\mathcal{E}') l'image de (\mathcal{E}) par f.

Exercice 3

5 points

Soit f la fonction définie sur]0; $+\infty[$ par :

$$f(x) = \frac{1 - x \ln x}{x} \int_{\mathbb{R}^{3}} dx dx dx$$

On admet que l'équation f(x) = 0 admet une solution unique α sur l'intervalle $I = \left[\frac{3}{2}; 2\right]$. Le but de cet exercice est de donner une valeur approchée de α .

Soit g la fonction définie sur $]0; +\infty[$ par :

$$g(x) \neq e^{\frac{1}{x}}$$

On définit la suite numérique (u_n) telle que :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = g(u_n) \end{cases}$$

- 1 Sachant que $f(\alpha) = 0$, montrer que α est solution de l'équation g(x) = x.
- 2 Montrer par récurrence que pour tout entier $n, u_n \in I$.
- 3 On suppose que pour tout x de I, $|g'(x)| \leq \frac{1}{2}$. En appliquant le théorème de l'inégalité des accroissements finis, montrer que : $\forall x \in I$, $|g(x) \alpha| \leq \frac{1}{2}|x \alpha|$.
- **4** a. Montrer que : $\forall n \geq 0, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
 - **b.** En déduire que $\forall n \geq 0, |u_n \alpha| \leq \left(\frac{1}{2}\right)^n$.
 - **c.** Montrer que la suite (u_n) converge vers α .
- **5** a. Déterminer un entier n_0 tel que $|u_{n_0} \alpha| \le 10^{-1}$.
 - **b.** Déterminer la valeur approchée u_{n_0} de α .

Exercice 4

3 points

Une maladie atteint 3% d'une population. Un test de dépistage donne les résultats suivants :

- Chez les individus malades, 95 % de tests sont positifs et 5 % sont négatifs.
- Chez les individus non malades, 1 % de tests sont positifs et 99 % négatifs.

On note:

- M l'évènement : « être malade » et,
- T l'évènement : « le test est positif ».
- 1 Construire un arbre pondéré correspondant à cette expérience aléatoire.
- **2** Donner la probabilité de l'évènement « $M \cap T$ », puis celle de « $\overline{M} \cap \overline{T}$ ».
- **3** Déterminer P(T) et $P(\overline{T})$.
- a. Calculer la probabilité de ne pas être malade sachant que le test est positif.
 - b. Calculer la probabilité d'être malade sachant que le test est négatif.