Sujet B.E.P.C 2014 -Mathématiques

A) Activités numériques et diverses (1

(12 points)

Exercice 1

- **a.** On donne x = 8631, 41 et y = 0,00045. Détermine les caractéristiques des $\log x$ et $\log y$.
- b. En utilisant les propriétés des logarithmes en base dix, calcule : $N = \log 8100 + \log \frac{9}{10^3}$ sachant que $\log 3 = 0,47712$.

Exercice 2

Résous dans \mathbb{R} , l'équation :

$$(3x-1)^2 = (4x+1)^2$$

Exercice 3

Le tableau ci-dessous récaptule les tailles en cm des élèves d'une classe de 3^e :

Taille en classe	[80; 100[[100; 120[[120; 140[[140; 160[[160; 180[
Effectif	2	4	5	6	3
Effectifs cumulés décroissants					

- a. Calcule l'effectif de cette classe.
- b. Recopie et complète le tableau statistique.

On considère les fonctions affines f et g définies par : MALLE MALLE f(x)

$$f(x) = 2x - 5$$
 et $g(x) \neq 2x + 3$

- 1 Calcule f(1) et g(0).
- 2 Représente graphiquement dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, les droites D_1 et D_2 .

- **3** Identifie la position relative des droites (D_1) et (D_2) .
- B) Activités géométriques

(8 points)

ALERIE DE MAC

Exercice 1

ABCest un triangle tel que AB=7 cm; BC=8 cm et AC=6 cm. Soit I le milieu de [BC].

- a. Construis le point M tel que : $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$.
- **b.** Démontre que $\overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MI}$.

Exercice 2

Soit α la mesure d'un angle aigu. On donne : $\cos^2 \alpha + \sin^2 \alpha = 1$.

Démontre que : $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$.

Exercice 3

(\mathscr{C}) est un cercle de centre O et de rayon A, B, C et D sont quatre points de ce cercle pris dans cet ordre tels que mes $\widehat{BCD}=110^\circ$; mes $\widehat{ADC}=80^\circ$ et mes $\widehat{DAB}=80^\circ$. Construis la figure.

Problème B

Le plan est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. On donne les points : A(-1;1) ; B(-5;-2) ; C(-1;-4) et D(3;-1).

- 1 Place ces points dans le repère.
- 2 Montre que $\overrightarrow{AB} = \overrightarrow{DC}$. Donne la nature du quadrilatère ABCD.
- 3 Soit I le milieu du segment [AD]. Détermine les coordonnées du point I.
- Démontre que les vecteurs $\overrightarrow{AI} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\overrightarrow{CI} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ sont orthogonaux.