Sujet bac 2014 - Série D

CHIMIBER POINTS

Partie A : vérification des connaissances

> Appariement

Relie un élément-question de la colonne A à un élément-réponse de la colonne B. $\underline{\text{Exemple}}$: $\mathbf{a} \cdot \mathbf{8} = \mathbf{b}_{.12}$.

Colonne A	Colonne B
$\mathbf{a} \cdot 1$ Le pH d'une solution de monoacide fort	$\mathbf{b} \cdot 1 t_{\frac{1}{2}} = \frac{1}{kC_0}$
${f a}\cdot {f 2}$ L'élévation ébulliométrique d'une solution	$b \cdot 2$ une droite de pente $-k$
${f a}\cdot {f 3}$ Le temps de demi-réaction d'une solution d'ordre 2	$b \cdot 3 - \log C_a$
${\bf a}\cdot {\bf 4}$ Pour une réaction d'ordre 1, la fonction $\ln C=f(t)$ est :	$b \cdot 4 \Delta\Theta = k' \frac{m}{m'.M}$

Question à réponse courte

Donne les définitions de :

- a. Série de raies
- b. Énergie d'ionisation pour un atome d'hydrogène

Réarrangement

Ordonne le texte suivant qui est écrit en désordre.

dans l'échantillon soit désintégrée / initialement présents / d'un nucléide / est la durée nécessaire / pour que / la période radioactive / la moitié des noyaux radioactifs

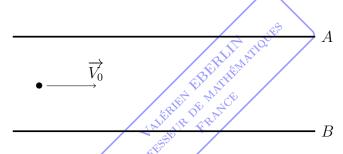
Partie B: application des connaissances

On prépare une solution S en dissolvant $7,9\,\mathrm{g}$ de cristaux anhydres de permanganate de potassium (KMnO₄) dans 200 mL d'eau.

Calcule la concentration molaire volumique de la solution S.

- On dose en milieu acide 20 mL de la solution S par une solution de sulfate de fer (FE²⁺ + SO_4^{2-}) à 1 mol/L.
 - a. Écris l'équation bilan de la réaction d'oxydoréduction.
 - **b.** Calcule le volume de la solution de sulfate de fer utilisé.
 - c. Calcule les concentrations molaires volumiques des ions manganèse (Mn²⁺) et des ions ferriques (Fe³⁺) formés.

On donne en g/mol : K=39 ; Mn=55 ; O=16 Couples redox : Fe^{3+}/Fe^{2+} ; MnO_4 $/Mn^{2+}$


Partie A : vérification de connaissances

Réponds par vrai ou faux

- a) Un mouvement s'effectuant à une vitesse v constante peut être circulaire ou rectiligne.
- b) Si un solide n'est ni isolé, ni pseudo-isolé, le vecteur accélération de son centre d'inertie n'est pas nul.
- c) Deux vibrations de périodes différentes ne peuvent pas interférer.
- d) L'énergie mécanique d'un système conservatif varie au cours du mouvement.

2 Schéma à faire

Une particule α (He²⁺) arrive, avec une vitesse $\overrightarrow{V_0}$, en un point O d'un espace champ électrique crée par deux plaques horizontales A et B telles que $V_B - V_A > 0$.

Reproduis puis complète le schéma en représentant le vecteur champ électrique \overrightarrow{E} et la force électrique \overrightarrow{F} qui s'exerce sur la particule.

3 Réarrangement

Réécris la phrase suivante de manière à définir une grandeur.

une période / parcourue / la longueur d'onde / la distance / est / par l'onde en

Partie B: application des connaissances

Deux pointes S_1 et S_2 distantes de 8 cm produisent à la surface horizontale d'une nappe d'eau des vibrations sinusoïdales d'amplitude a=2 mm. Des ondes mécaniques se propagent à la célérité v=1,5 m/s.

- La distance entre deux points consécutifs d'amplitude maximale vaut D=1 cm. Détermine la longueur d'onde et la fréquence des vibrations.
- **2** Les équations horaires de S_1 et S_2 sont telles que : $Y_{S_1}(t) = Y_{S_2}(t) = a \sin(2\pi N)t$.
 - **a.** Établis l'équation horaire du mouvement d'un point M situé à une distance d_1 de S_1 et d_2 de S_2 .
 - **b.** Détermine l'élongation de M pour $d_1 = 4$ cm et $d_2 = 7$ cm.

Partie C: résolution d'un problème

En vue de collecter les informations sur un endroit précis du globe terrestre, un satellite doit être placé à une altitude h afin qu'il paraisse immobile pour un observateur terrestre. On dit dans ce cas que ce satellite est géostationnaire.

- 1 Ce satellite, assimilé à un point matériel de masse m, doit décrire un mouvement circulaire uniforme à cette altitude h. Établis, en fonction de g_0 , R et h:
 - a. La vitesse linéaire du satellite.
 - **b.** La période de révolution.
- **a.** Quelle est la valeur de la période de révolution (en secondes) pour que ce satellite soit géostationnaire?
 - **b.** À quelle altitude h doit-on alors placer ce satellite?

On donne le champ de gravitation terrestre à une altitude $h: g_h = g_0 \frac{R^2}{(R+h)^2}$;

R = 6400 km est le rayon terrestre;

 $g_0 = 9.8 \,\mathrm{m/s^2}$ est le champ de gravitation terrestre au sol.