Sujet bac 2014 - Série C

Exercice 1

4 points

1 Soit (E) l'équation d'inconnue Z :

nconnue
$$Z$$
:
$$Z^2 - (2i e^{i\theta} \cos \theta) Z - e^{i2\theta} = 0 \quad \text{où} \quad \theta \in \mathbb{R}$$

Résoudre dans $\mathbb C$ l'équation (E). On présentera les solutions sous forme exponentielle.

- Dans le plan rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) , A et B sont les points d'affixes respectives $Z_A = e^{i\frac{\pi}{2}}$ et $Z_B = e^{i(\frac{\pi}{2}+2\theta)}$. On note Z_0 l'affixe de O.
 - **a.** Exprimer $arg(\frac{Z_B-Z_0}{Z_A-Z_0})$ en fonction de θ .
 - **b.** En déduire l'ensemble des valeurs de θ pour lesquelles $\overline{(\overrightarrow{OA},\overrightarrow{OB})} = \frac{\pi}{2} [2\pi]$.
 - c. On suppose que $0 \le \theta < \frac{\pi}{2}$. Écrire le conjugué de $Z_A + Z_B$ sous forme exponentielle.

Exercice 2 8 points

On considère un triangle ABC isocèle rectangle en A de sens direct tel que AC = 6 cm. On désigne par D, E, F les milieux respectifs des segments [BC], [AB] et [BD].

1 Faire la figure.

Soit (\mathscr{P}) la parabole de foyer B et de directrice la droite (AC).

- 2 a. Qu'appelle-t-on pas ou paramètre d'une parabole?
 - **b.** Déterminer le pas α de (\mathscr{P}) .

Soit G le symétrique de A par rapport à la droite (BC).

- **3** a. Démontrer que la droite (AG) est une tangente à (\mathscr{P}) en un point à déterminer.
 - **b.** Construire le point H de (\mathscr{P}) situé sur la médiatrice du segment [EB].
 - c. Construire l'arc (\mathscr{P}_0) de (\mathscr{P}) de corde focale le segment [GI] où I est le symétrique de G par rapport à la droite (AB).

Soit (\mathcal{P}') la parabole de foyer B et de directrice (AG).

- 4 Déterminer le centre Ω , le rapport K et une mesure de l'angle de la similitude plane directe S qui transforme (\mathcal{P}') en (\mathcal{P}) .
- **5** Construire l'antécédent J de G par S.
- 6 Construire l'arc (\mathscr{P}'_0) qui a pour image (\mathscr{P}_0) par S.

On désigne par A'_0 l'aire de la portion (\mathscr{E}'_0) du plan limitée par les droites (JB), (EF) et (\mathscr{P}'_0) , et par A_0 celle de la portion du plan (\mathscr{E}_0) image de (\mathscr{E}'_0) par S.

- 7 Démontrer que $A_0 = 2A'_0$.
- 8 Déterminer l'aire A de $S \circ S \circ S(\mathcal{E}_0')$ en fonction de A_0

Exercice 3

4 points

Soit la fonction:

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f_n(x) = e^{-x} x^{n+1} \text{ où } n \in \mathbb{N}$

- 1 Déterminer l'ensemble de définition E_{f_n} de f_n .
- 2 On suppose que n est impair.
 - a. Calculer la dérivée de f_n et étudier le signe de cette dérivée.
 - **b.** Calculer les limites de f_n aux bornes de E_{f_n} .
 - c. Dresser le tableau de variation de f_n .
- **3** Pour $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$, on pose $I_{n,p} = \int_0^p f_n(x) dx$ et $J_n = \lim_{p \to +\infty} I_{n,p}$.
 - **a.** En intégrant $I_{n,p}$ par parties, montrer que $J_{n+1} = (n+2)J_n$.
 - **b.** En déduire l'expression de J_n en fonction de n et J_0 .

Exercice 4 4 points

Dans une urne contenant quatre jetons numérotés 1, 2, 3 et 4 indiscernables au toucher, on extrait successivement sans remise deux jetons.

La variable aléatoire X est celle qui détermine «la valeur absolue de la différence des deux numéros sortis»

- 1 Déterminer la loi de probabilité de X.
- 2 Calculer l'expérance mathématiques, la variance et l'écart-type de X.

