Sujet bac 2013 - Série D

THIMLE THE RESIDENCE

Exercice 1 (Spectre de l'atome d'hydrogène)

Les niveaux d'énergie quantifiés de l'atome d'hydrogène sont donnés par :

 $E_n = -\frac{13,6}{n^2} \, (\text{eV}) \quad n$, étant un nombre entier supérieur ou égal à 1

- **a.** Calculer les énergies des niveaux correspondants à n=1; n=2; n=3; n=4; n=5 et $n=\infty$.
 - **b.** Représenter dans le diagramme d'énergie, les cinq premiers niveaux d'énergie ainsi que le niveau correspondant à l'atome ionisé.
- 2 Le spectre de l'atome d'hydrogène contient les radiations de fréquences $N_a=6,16.10^{14}$ Hz et $N_b=6,91.10^{14}$ Hz.

Sachant que ces deux radiations aboutissent au niveau n=2, déterminer les numéros a et b des niveaux initiaux.

On donne : $h = 6,62.10^{-34} \text{ J.s}$; $1 \text{ eV} = 1,6.10^{-19} \text{ J.}$

Exercice 2 (Réaction acide-base)

On dissout une quantité de soude de masse $m=4,0\,\mathrm{g}$ dans un volume $V_1=500\,\mathrm{mL}$ de solution d'acide chlorhydrique de concentration molaire volumique $C_1=10^{-1}\,\mathrm{mol/L}$.

- 1 a. Écrire les équations des réactions.
 - **b.** Déterminer, en moles, la quantité d'ions hydroxyde apportés par la soude et la quantité d'ions hydronium présents dans la solution d'acide chlorhydrique avant le mélange.
- 2 Le mélange obtenu est-il acide ou basique?
- Calculer les concentrations des ions présents dans le mélange. En déduire le pH.
- 4 Quel volume de solution d'acide chlorhydrique de concentration C_1 faut-il ajouter au mélange précédent pour obtenir une solution neutre?

On donne:

 $K_e(eau) = 10^{-14} \text{ à } 25 \, ^{\circ}\text{C}$

Masses atomiques en g/mol : Na=23 ; Q=16 ; H=1.

PHYSIQUE 12 points

Exercice 1 (Oscillations mécanique)

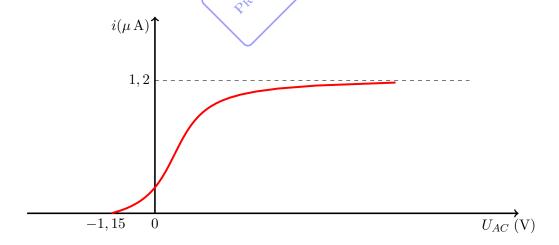
Une tige homogène OA de longueur L=1 m, de masse $m=100\,\mathrm{g}$, peut osciller sans frottement autour d'un axè horizontal (Δ) passant par son extrémité supérieur O. On fixe à l'autre extrémité A de la tige une masse $m_A=\frac{3m}{2}$.

Le pendule ainsi constitué est écarté de sa positon d'équilibre d'un angle $\theta_0 = 0, 15$ rad, puis il est abandonné sans vitesse initiale.

- 1 Soit G le centre d'inertie du système ainsi constitué.
 - a. Montrer que la position du centre d'inertie G est tel que $OG = \frac{4L}{5}$.
 - **b.** Calculer le moment d'inertie J_{Δ} du système par rapport à (Δ) .
- 2 a. En utilisant la méthode énergétique, déterminer la nature du mouvement de ce pendule pour des oscillations de faible amplitude.
 - **b.** Écrire l'équation horaire du mouvement de ce pendule en prenant pour origine des temps, l'instant où on l'abandonne.

Exercice 2 (Onde progressive)

Une lame vibrante est munie d'une pointe dont l'extrémité frappe la surface d'une nappe d'eau en un point S. La pointe a mouvement rectiligne sinusoïdal de fréquence N=50 Hz et d'amplitude a=3 mm.


- 1 Établir l'équation horaire du mouvement de S, sachant qu'à t=0, la source S est à son élongation maximale positive.
- 2 La nappe d'eau est le siège d'une onde progressive sinusoïdale transversale de longueur d'onde $\lambda = 2$ cm.
 - a. Calculer la célérité des ondes.
 - **b.** Établir l'équation horaire $Y_M(t)$ du mouvement d'un point M situé à la distance $x=8,5\,\mathrm{cm}$ de S.
 - \mathbf{c} . Comparer les mouvements de S et de M.
 - d. Représenter dans un même système d'axes, les courbes $Y_S(t)$ et $Y_M(t)$.

Exercice 3 (Effet photoélectrique)

On éclaire une cellule photoélectrique au césium successivement avec deux radiations lumineuses de longueur d'onde $\lambda_1 = 410$ nm et $\lambda_2 = 740$ nm. On rappelle que $1 \text{nm} = 10^{-9}$ m.

- 1 La longueur d'onde seuil photoélectrique du césium est $\lambda_0 = 660$ nm.
 - a. Donner la définition de la longueur d'onde seuil,
 - b. Parmi les deux radiations, préciser celle qui provoque l'émission d'électrons.
- 2 Pour la radiation qui provoque l'émission d'électrons, calculer en électron-volts, l'énergie cinétique maximale d'un électron émis par la cathode.
- On établit entre l'anode et la cathode une tension variable U_{AC} et on note l'intensité du courant pour chaque valeur de U_{AC} .

 On donne la caractéristique $I = f(U_{AC})$

- **a.** Que signifient les nombres -1, 15 V et $1, 2 \mu$ A?
- **b.** Calculer la tension U_{AC} pour laquelle les électrons arrivent à l'anode à la vitesse $V_A=2\,000$ km/s.
- **c.** Lorsqu'on a obtenu le courant de saturation, déterminer le nombre d'électrons émis par la cathode en 16 s.

