Sujet bac 2013 Série C

Exercice 1 4 points
On considère l'équation complexe
$$(E)$$
 telle que $\sum_{i=1}^{n} \frac{1}{2} \frac{1}{i} \frac{1}{2} \frac{1}{i} \frac{1}{2} \frac{1}{i} \frac{1}{2} \frac{1}{i} z^2 - \left(\frac{1}{2} + \frac{1}{2}i\right)z + 1 = 0$

Montrer que 1 est solution de (E)

- 1 Montrer que -1 est solution de (E).
- **2** Démontrer que si z_0 est solution de (E) alors son inverse $\frac{1}{z_0}$ est aussi solution de (E).
- **3** Résoudre dans \mathbb{C} , l'équation (E') telle que (E') : $z^2 \left(\frac{3}{2} + \frac{1}{2}i\right)z + 1 = 0$.
- 4 Déterminer toutes les solutions de l'équation (E).

Exercice

4 points

Les caractères X et Y sont distribués suivants le tableau ci-dessous.

X	<u>C</u>	-2	-2	-1	-2	-1	0	-1	-2	-1	-2	0	-1	-1	-1
Y	7	-1	2	2	-1	2	2	0	-1	0	2	-1	-1	0	-1

- 1 Transformer ce tableau en un tableau à double entrées d'effectifs n_i .
- 2 Déterminer le point moyen $G(\overline{X}, \overline{Y})$.
- 3 Calculer les variances V(X) et V(Y) de X et Y.
- 4 Calculer la covariance Cov(X,Y) et le coefficient de corrélation linéaire entre X et Y.

Problème

12 points

On considère un carré \overrightarrow{ABCD} de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = 90^{\circ}$ et AD = 2. On désigne par (\mathscr{P}_1) la parabole de directrice la droite (AD) et tangente en C à la droite (AC).

1 Démontrer que le foyer de (\mathscr{P}_1) est B.

Soit (\mathcal{P}_2) la parabole de foyer B et tangente à la droite (AD) en D, E le symétrique de B par rapport à A, F le symétrique de D par rapport à la droite (AB).

- 2 Démontrer que la droite (EF) est la directrice de (\mathscr{P}_2) .
- 3 Construire le deuxième point H de (\mathscr{P}_2) appartenant à la droite (DB).

- 4 Comment appelle-t-on le segment [DH] pour la parabole (\mathscr{P}_2) ? Justifier la réponse.
- **5** Démontrer que le point I symétrique de C par rapport à (BE) appartient à (\mathcal{P}_1) .
- 6 Construire les arcs des paraboles (\mathcal{P}_1) et (\mathcal{P}_2) de cordes respectives [CI] et [DH].

Soit S la similitude plane directe qui transforme (\mathscr{P}_2) en (\mathscr{P}_1) .

- 7 Déterminer une mesure θ de l'angle de S. Justifier la réponse.
- 8 Déterminer son rapport k. Justifier la réponse,
- 9 Déterminer son centre. Justifier la réponse.

Le plan étant rapporté à un repère orthonormé $(J,\overrightarrow{JB},\overrightarrow{JO})$ où J est le milieu de [AB], on considère la fonction f définie par : $f(x) = 2\sqrt{x} + \ln(x+1)$. (\mathscr{C}) désigne sa courbe représentative dans le repère $(J,\overrightarrow{JB},\overrightarrow{JO})$.

- 10 Dresser le tableau de variation de f.
- 11 Étudier la branche infinie de (\mathscr{C}) .
- 12 Construire (\mathscr{C}) dans le repère $(J, \overrightarrow{JB}, \overrightarrow{JO})$.
- Calculer l'aire de la portion du plan (\mathscr{E}) limitée par les droites (JO), (BC) et les courbes (\mathscr{E}) et (\mathscr{P}_1) . On montrera que l'équation cartésienne de (\mathscr{P}_1) dans le repère $(J, \overrightarrow{JB}, \overrightarrow{JO})$ est $y^2 = 4x$.

