Sujet bac 2012 Série C

Exercice

- Exercice 1 3 points

 1 Résoudre dans \mathbb{C} , l'équation $Z^4 \sqrt{2}Z^3$ $4\sqrt{2}Z 16 = 0$ sachant qu'elle admet deux solutions imaginaires pures solutions imaginaires pures.
- 2 On considère dans le plan complexe muni d'un repère $(O, \overrightarrow{u}, \overrightarrow{v})$, les points A, B, C et D d'affixes respectives : $z_A = 2i$; $z_B = \sqrt{2}$; $z_C = -2i$ et $z_D = 2\sqrt{2}$.
 - a. Représenter les points A, B, C et D dans le repère $(O, \overrightarrow{U}, \overrightarrow{V})$.
 - **b.** Montrer que les points A, B, C et D appartiennent à un même cercle (\mathscr{C}) dont on précisera le rayon et le centre.

Exercice

5 points

Pour tout entier naturel non nul n, on considère la suite (I_n) définie par :

$$I_n = \int_0^1 x^n e^{-\frac{x^2}{2}} dx$$

- 1 Calculer I_1 .
- 2 Montrer que $\forall n \in \mathbb{N}^*, I_n \geq 0$.
- 3 Par une intégration par parties, montrer que $I_n = -e^{-\frac{1}{2}} + (n-1)I_{n-2}$ (On pourra écrire $x^n = x^{n-1}.x).$
- 4 Étudier le sens de variation de la suite (I_n) . En déduire que la suite (I_n) est convergente et converge vers une limite l.
- **5** Montrer que $\forall n \in \mathbb{N}^*, \quad 0 \leq I_n \leq \frac{1}{n+1}$. Calculer l.

Problème

12 points

Le plan \mathscr{P} est orienté. ABCD est un carré de sens direct, de centre O. I, J, K et L sont les milieux respectifs des segments [AD], [AB], [BC] et [CD].

- 1 E est le point du plan tel que le triangle IDE soit rectangle isocèle en D et de sens direct. Montrer que IE = AO.
- **2** En déduire qu'il existe une rotation r transformant I en A et E en O. Préciser une mesure θ de l'angle de la rotation r.
- 3 Construire Ω le centre de la rotation r.
- 4 On désigne par Ω_1 , le point d'intersection des droites (IE) et (OA). Montrer que les points Ω , E, O, Ω_1 sont situés sur un cercle ($\mathscr C$) que l'on tracera.

- 5 Montrer que $A\Omega_1 I\Omega$ est un carré.
- 6 Donner les caractéristiques de la similitude plane directe S qui transforme le carré ABCD
- en AM_1M .

 7 Placer K' = S(K) puis L' = S(L).

 8 Soit $\overline{S} = h_{(Q,\frac{1}{2})} o S_{OD}$, Q étant un point de la droite (OD). Caractériser \overline{S} .
- 9 On se propose de construire Q sachant que $\overline{S}(C) = J$.
 - **a.** Montrer que si $\overline{S}(C) = J$ alors $\overline{QJ} = \frac{1}{2} \overline{QA}$ **b.** Construire alors le point Q.
- 10 Soit f l'application de \mathscr{P} dans \mathscr{P} qui à tout point M associe M' tel que $\overrightarrow{HM'} = \frac{1}{2}\overrightarrow{HM}$, H étant le projeté orthogonal de M sur la droite (OE).
 - **a.** Caractériser f.
 - **b.** Tracer (\mathscr{C}') l'image de (\mathscr{C}) par f.
 - **c.** Donner la nature de la courbe (\mathscr{C}') .

