Sujet bac 2011 - Série C

CHIMIE 8 points

Exercice 1

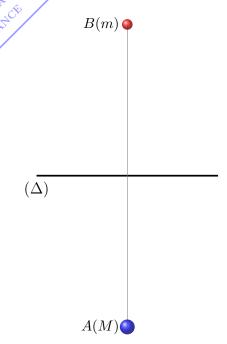
On mélange dans plusieurs ampoules 3,7 g d'acide propanoïque (CH_3-CH_2COOH) et 1,6 g de méthanol (CH_3-OH). On scelle les ampoules et on les place dans une étuve à 50°C.

Au bout de 24 heures, on constate que la masse d'acide propanoïque après la réaction reste constante et égale à 1,23 g par ampoule.

- a. Quelle réaction chimique a eu lieu dans les ampoules?
 - **b.** Donner ses caractéristiques.
- 2 a. Écrire l'équation-bilan de cette réaction.
 - b. Donner le nom du composé organique formé.
- 3 Calculer la quantité de matière (nombre de moles) du composé organique formé à l'équilibre.
- **a.** Calculer le rendement de cette réaction.
 - b. Comment pourrait-on obtenir le même résultat expérimental en moins de temps?

On donne en g·mol $^{-1}$: C=12; O=16; H=1.

Exercice 2


Au cours d'une séance de travaux pratiques, le professeur demande à un élève de préparer une solution S_0 d'ions Fe²⁺ en partant d'une masse m=13,9 g de sulfate fer II hydraté (FeSO₄,7 H₂O) qu'il dissout dans l'eau pure pour obtenir 500 cm³ de solution.

- 1 Calculer la concentration molaire théorique C_0 de la solution S_0 obtenue.
- Afin de vérifier le travail effectué, le professeur demande à un autre élève de déterminer la concentration de la solution obtenue par dosage à l'aide d'une solution de permanganate de potassium $(K^+ + MnO_4^-)$, de concentration molaire $0,04 \, \text{mol} \cdot L^{-1}$.
 - a. Écrire l'équation-bilan de la réaction qui a lieu.
 - b. Sachant que 11 cm^3 de la solution de permanganate de potassium ont été nécessaires pour doser 20 cm^3 de la solution d'ion Fe^{2+} , déterminer la concentration molaire volumique C de la solution d'ion Fe^{2+} .
 - c. En déduire l'incertitude relative sur la concentration C_0 .

On rappelle que les couples redox en présence sont : ${\rm Fe^{3+}/Fe^{2+}}$ et ${\rm MnO_4^-/Mn^{2+}}$. On donne en g·mol⁻¹ : ${\rm Fe=56}$; S=32 ; H=1.

PHYSIQUE 12 points

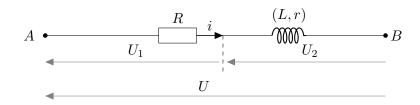
AB est une tige rigide de masse négligeable, de the little par little de milieu O, de longueur AB=2L=80 cm. AB peut osciller dans le plan vertice A, on a fixé A. de masse m (ces deux solides sont ponctuels). On donne: $M = 300 \,\mathrm{g}$; $m = 100 \,\mathrm{g}$ et $q = 10 \,\mathrm{m/s^2}$.

- a. Calculer le moment d'inertie du système ainsi constitué par rapport à l'axe (Δ) .
 - **b.** Donner la position G du centre d'inertie du système.
 - c. On écarte ce système d'une faible amplitude de la position d'équilibre et on l'abandonne sans vitesse initiale.
 - **c1.** Etablir l'équation différentielle du pendule ainsi constitué.
 - **c2.** En déduire la période du mouvement. Faire l'application numérique.
- 2 Le pendule est écarté de sa position d'équilibre d'un angle $\alpha = 60^{\circ}$ et abandonné sans vitesse initiale.
 - a. En utilisant le théorème de l'énergie cinétique, calculer la vitesse angulaire du pendule au passage à la position d'équilibre.
 - **b.** En déduire la vitesse linéaire de A à cette position.

Exercice 2

Dans le dispositif d'Young, la source S émet une radiation lumineuse de longueur d'onde λ qui éclaire les fentes S_1 et de S_2 distances de $A = 7.10^{-1}$ mm. On observe le phénomène d'interférences sur un écran situé à une distance D=1 m du plan des fentes.

- 1 Comment appelle-t-on la zone où l'on observe ce phénomène?
- 2 Sur l'écran, le milieu de la $7^{\text{ème}}$ frange brillante est situé à x=4,2 mm du milieu de la frange centrale.


Calculer:

- **a.** L'interfrange i.
- **b.** La longueur d'onde λ de la radiation.
- 3 La source S émet maintenant deux radiations, l'une de longueur d'onde $\lambda_1 = 0,420 \,\mu\text{m}$ et l'autre de longueur d'onde inconnue λ_2 .

 - a. Décrire le phénomène observé sur l'écran. δ t l'autre de longueur d'onde inconnue λ_2 . **a.** Décrire le phénomène observé sur l'écran. **b.** Sur l'écran, le milieu de la $8^{\text{ème}}$ frange brillante de la radiation de longueur d'onde λ_1 coïncide avec le milieu de la 7ème frange brillante de la radiation de longueur d'onde λ_2 . Calculer λ_2 .
 - c. Calculer la distance entre deux coïncidences successives.

Exercice 3

On se propose de déterminer la résistance r et l'inductance L d'une bobine. Pour cela, on monte en série un conducteur ohmique de résistance $R = 7 \Omega$ et la bobine.

L'ensemble est alimenté par une tension sinusoïdale de fréquence $N=50~\mathrm{Hz}$ et de valeur efficace U=24 V. On mesure les tensions efficaces U_1 et U_2 respectivement aux bornes du conducteur ohmique et aux bornes de la bobine.

On obtient : $U_1 = 8 \text{ V et } U_2 = 19,6 \text{ V}.$

- a. Donner les expressions et calculer les impédances Z_1 du conducteur ohmique, Z_2 de la bobine et Z du circuit.
 - **b.** En déduire r et L.
- 2 On ajoute en série dans le circuit précédent un condensateur de capacité C. Le circuit étant capacitif:
 - a. Quelle doit être la valeur de C pour que l'intensité efficace soit la même que dans la question 1. La tension n'étant pas modifiée ainsi que la fréquence.
 - b. Exprimer la phase φ de la nouvelle tension instantanée en fonction de L, ω , R et r et en déduire φ .
 - c. Construire le diagramme de Fresnel correspondant.

