Série C Sujet bac 2011

On pose $A = \int_0^{\frac{\pi}{2}} x \cos^2 x \, dx$, $B = \int_0^{\frac{\pi}{2}} x \sin^2 x \, dx$.

1 Calculer A + B.

2 Calculer $A - B \stackrel{\text{\tiny 2}}{\sim} 1$.

- **3** Déduire des questions 1. et 2., les valeurs de A et B.

Exercice 5 points

On donne en milliers de francs CFA le bénéfice d'une ferme avicole qui importe des poussins sur une période de 5 mois.

x_i (en mois)	1	2	3	4	5
y_j (en milliers de francs)	96,1	63,5	49,2	41,5	35,7

- 1 Représenter graphiquement cette série statistique par un nuage de points dans un repère orthogonal d'unités: 2 cm pour 1 mois en abscisses et 2 cm pour 5 milliers de francs en ordonnées.
- **2** Donner une équation de la droite de régression de y en x.
- 3 Tracer cette droite sur le graphique. Estimer le bénéfice de la ferme avicole au 6 ème mois.

Problème 12 points

Le plan est orienté. Soit ABC un triangle tel que AC = 2AB et $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{6} [2\pi]$. On prendra AB = 3 cm et AC = 6 cm. On construit à l'extérieur de ce triangle, les carrés ACFGet ABDE tels que $(\overrightarrow{AC}, \overrightarrow{AG}) \equiv \frac{\pi}{2} [2\pi]$ et $(\overrightarrow{AE}, \overrightarrow{AB}) \equiv \frac{\pi}{2} [2\pi]$ PROPESSEUR DE RANGE ARTOURS

K est le point tel que $\overrightarrow{GK} = \overrightarrow{AE}$.

Les droites (AK) et (BC) se coupent en I.

Les droites (AB) et (KG) se coupent en J.

Partie A

1 Faire une figure.

- Démontrer qu'il existe une rotation R_1 qui transforme le triangle ABC en le triangle EAK.
 - On note Ω_1 son centre. Construire Ω_1 . Donner l'angle de R_1 .
- Démontrer qu'il existe une rotation R_2 qui transforme le triangle ABC en le triangle GKA. Donner l'angle de R_2 .
 - On note Ω_2 son centre. Construire Ω_2 .
- **a.** On considère l'application $f = R_1 \circ R_2$. Montrer que f est une translation.
 - **b.** Calculer f(C). En déduire le vecteur de translation de f
- Démontrer que les points A, B, I et Ω_1 sont situés sur un même cercle (\mathscr{C}) de centre O, milieu du segment [AB].
- 6 Démontrer que les points A, G, J et Ω_2 sont situés sur un même cercle (\mathscr{C}') de centre O', milieu du segment [AG].

Partie B

On rapporte maintenant le plan au repère orthonormal direct $(A, \overrightarrow{u}, \overrightarrow{v})$ avec $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = -\overrightarrow{AE}$.

Soit S la similitude plane directe de centre A qui transforme (\mathscr{C}) en (\mathscr{C}') .

- 7 Donner les éléments caractéristiques de S.
- 8 Donner l'écriture complexe de la similitude S.
- 9 Exprimer x et y en fonction de x' et y'.

Partie C

Soit ($\mathscr E$) l'ellipse d'équation $4x^2+y^2=4$.

- 10 Construire (\mathscr{E}) tout en précisant son centre, ses sommets et foyers.
- 11 Déterminer une équation de (\mathcal{E}') image de (\mathcal{E}) par S.

